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Abstract
The user experience for networked applications is

becoming a key benchmark for customers and network
providers when comparing, buying and selling alterna-
tive services. There is thus a clear need to detect, isolate
and determine the root causes of network events that
impact end-to-end performance and the user experience
so that operators can resolve such issues in a timely
manner. We argue that the most appropriate place
for monitoring these service-level events is at the end
systems where the services are used, and propose a new
approach to enable and support this: Crowdsourcing
Cloud Monitoring (C2M).

This paper presents a general framework for C2M
systems and demonstrates its effectiveness using a large
dataset of diagnostic information gathered from Bit-
Torrent users, together with confirmed network events
from two ISPs. We demonstrate that our crowdsourcing
approach allows us to detect network events worldwide,
including events spanning multiple networks. We dis-
cuss how we designed, implemented and deployed an
extension to BitTorrent that performs real-time network
event detection using our approach. It has already been
installed more than 34,000 times.

1 Introduction
The Internet is increasingly used as a platform for diverse
distributed services such as VoIP, content distribution
and IPTV. Given the popularity and potential for revenue
from these services, theiruser experiencehas become
an important benchmark for service providers, network
providers and end users [1].

Perceived user experience is in large part determined
by the frequency, duration and severity of network events
that impact a service. There is thus a clear need to detect,
isolate and determine the root causes of these service-
level network events so that operators can resolve such
issues in a timely manner, minimizing their impact on
revenue and reputation.

We argue that the most effective way to detect service-
level events is by monitoring the end systems where the
services are used.In this work, we develop a practical
approach to monitoring that enables real-time detection
of network events impacting the user experience for
services that reach the network edge.

Most previous work focuses on monitoring core net-
works [2–5] or probing from global research and ed-
ucation network (GREN) environments [6, 7]. While

effective at detecting events that affect large numbers
of customers and services, these approaches can miss
silent failures (e.g., incompatible QoS or ACL settings)
and their impact on services for customers [8]. Further,
existing end-to-end monitoring approaches require active
measurements that do not scale to the vast number of
elements at the edge of the network.

Detecting service-level network events from end sys-
tems at the network edge poses a number of interesting
challenges. First, any practical approach must address
the scalability constraints imposed by collecting and
processing information from potentially millions of end
systems [9]. Second, to assist operators in addressing
problems promptly, events should be detected quickly
(i.e., within minutes) and isolated to specific network
locations (e.g., BGP prefixes). Finally, the approach
must facilitate a broad (Internet-scale) deployment of
edge-system monitors, ensure user privacy and provide
trustworthy event detection information.

We address these challenges through a new approach
to network event detection – pushing end-to-end per-
formance monitoring and detection to the end systems
themselves. We call this approachC2M for Crowdsourc-
ing Cloud Monitoring. By crowdsourcing network mon-
itoring, participating hosts can handle the magnitude of
data required for detecting events in real time, at the scale
of millions of monitors. In addition, using end systems
provides flexibility in the types of monitoring software
that can be installed inside or alongside services, facili-
tating immediate and incremental deployments. Finally,
we discuss general techniques to ensure the reliability of
detection results without violating user privacy.

This paper makes the following contributions. Sec. 2
identifies challenges faced by any edge-system monitor-
ing approach and discusses potential solutions. Next, we
address the general problem of how to detect network
performance events from the edge (Sec. 3). Specifically,
we develop a framework for our C2M approach in which
each end system performs a significant portion of event
detection locally, then uses a distributed approach for
corroborating these events.

Demonstrating the effectiveness of any edge-based
approach is challenging due to the lack of representative
testbeds and the sheer scale and diversity of networks
worldwide. In Sec. 4, we address this issue using a large
dataset of diagnostic information from edge systems
running the Ono plugin [10] for the Vuze BitTorrent
client. Guided by confirmed network events that they
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observed, we design and implement theNetwork Early
Warning System (NEWS), a BitTorrent extension that
performs real-time event detection.

We evaluate the effectiveness of our approach in
Sec. 5. In addition to comparing NEWS-detected
events with confirmed ones, we demonstrate that our
crowdsourcing approach allows us to detect network
events worldwide, including events spanning multiple
networks. Our approach is robust to various parameter
settings and incurs reasonably low overhead.

NEWS has already been installed 34,000 times,
demonstrating not only the feasibility of our approach
for a real application, but also that there are appropriate
incentives for widespread adoption beyond BitTorrent
(Sec. 6). We are currently working with developers of
popular software to instrument additional applications.
To assist with quickly resolving problems causing
detected network events, we have implemented
NEWSight1 – a system that accesses live event
information and publishes its results in real time.
We are beta-testing this public interface with ISPs.

2 C2M Advantages and Challenges
The user experience for networked applications (e.g.,
Web sites, VoIP and video streaming) is becoming an im-
portant benchmark for customers and network providers
when comparing, buying and selling alternative ser-
vices [1]. Monitoring service-level events – ones that
impact end-to-end performance and the user experience
– is thus important for users, service providers and
network operators. Further, correcting these issues in a
timely manner requires that operators know where, when
and why they are occurring in real time.

To detect service-level events, we propose using moni-
toring software that runs inside or alongside applications
that use or provide the corresponding services – on end
systems. In particular, our goal is to detect service-level
events from the edges of the network in real time.

Table 1 summarizes how the C2M approach differs
from previous work in network event detection. The
vast majority of previous work focuses on detecting
network events in or near backbone links, using data
gathered from layer-3 and below [2, 4, 5, 11, 12]. While
such device-level monitoring can detect many types of
events (e.g., outages or packet loss), existing techniques
require active measurements that do not scale to the large
number of elements at the network edge. Further, these
monitors may miss silent failures (e.g., incompatible
QoS/ACL settings) and their impact on performance.
In contrast, our approach focuses on end-to-end perfor-
mance problems, which vary among applications.

Other research projects have proposed monitoring net-

1http://aqualab.cs.northwestern.edu/projects/news/newsight.html

Approach Event type Coverage Online?

ISP monitoring
Failures [3,7,16,17] Network Core Real time
Chronic events[8] Network Core Offline
IPTV [18] Network/Service Core-Edge Offline

GREN monitoring
All pairs (active)[19] Network/Service GREN O(h) time
All pairs (passive)[6] Service GREN Real time
Distributed probes[7] Network GREN-Edge O(n) time

C2M
Services/OS (passive) Service Edge-Edge Real time

Table 1: Comparison of detection approaches. For systems
where detection times depend on system size,h is the number
of monitors andn is the number of monitored networks.

work performance from end systems; however, because
they rely at least in part on active measurements they
are limited in scale and scope to GREN [6, 13] or
enterprise [14,15] environments. Our approach relies on
passive measurements of running services so that it can
scale to end systems located at the edge of the Internet.

Finally, some network monitoring tools generate flows
that simulate protocols used by edge systems [1]. While
these can indeed detect end-to-end performance prob-
lems, current deployments require controllable, dedi-
cated infrastructure and are inherently limited to rela-
tively small deployments in PoPs. Our C2M approach
does not require any new infrastructure, nor control of
end systems, and thus can be installed on end systems at
the edge of the network.

There is a number of important issues that must be
addressed in the context of C2M.

Scalability. As one moves toward the edge of the
network, the number of network elements – and thus
the opportunities for failures – rapidly increase. With
more than 1 billion Internet users worldwide, an edge
monitoring system that includes even a small fraction
of the population must support millions of hosts. As
such, collecting and processing raw performance data
using a centralized infrastructure is neither scalable nor
practical. Extending existing network monitoring ap-
proaches to edge systems is nontrivial: deployments in
network edge devices (e.g., DSL modems) are difficult or
impossible without vendor support; moreover, gathering
and processing data for detecting events in real time may
require costly dedicated infrastructure [20].

We propose a decentralized approach to event detec-
tion that relies on each system detecting local service-
level performance problems as potential network events.
By processing performance data at the edge systems, our
approach facilitates an immediately deployable, scalable
monitoring system.

Granularity . Any real-time network monitoring sys-
tem must quickly identify network events and determine
the affected network region. The time to detect a problem
is largely dependent on how frequently a system can
sample performance information. By gathering and
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processing performance information locally at each end
system, C2M can detect events with fine granularity
(on the order of seconds) and relatively low CPU and
memory overhead. To isolate the scope of network
events, we use multiple locally detected events from the
same network location. These network locations can
include publicly available locations such as BGP prefixes
and AS numbers, or richer information such as AS
relationships and topologies for cross-network problems.

Privacy. Any implementation of an edge-based net-
work monitoring service is subject to privacy concerns.
In previous work that used control-layer information
(e.g., BGP updates), network probes (e.g., traceroutes)
or aggregate flows to identify network events, privacy is
ensured because no personally identifiable information
(PII) is exchanged. However, in an edge-based approach
that relies on corroboration among multiple vantage
points to confirm and isolate events, users must share
information about their network views. We demonstrate
how edge-based monitoring can remain effective without
publishing any PII.

Trust . Most existing network event detection ap-
proaches are implemented as closed systems, where
third parties are unable or highly unlikely to affect
the accuracy or validity of detected problems. In the
context of edge-based detection, an open, decentralized
approach is vulnerable to attack. For example, one ISP
may wish to “poison” the system by introducing false
reports of events detected by users in a competitor’s ISP.
We propose several ways to harden an implementation
against such attacks.

Adoption. Any network event detection approach
is limited by the coverage of its deployment. In the
case of C2M, there is no cost to deploy and there are
essentially no limitations as to where participating hosts
can be located; however, the main challenge is gaining
widespread adoption. One can address this issue by
incorporating the software into an OS, providing it as a
background service, and/or distributing it as part of net-
worked applications. In deployments where users must
install new software, an appropriate incentive model is
essential. Existing approaches to network monitoring
have used incentives such as micropayments [21], altru-
ism [22] and mutual benefit [10]. Based on the success
of Ono [10], we propose using a mutual benefit model,
which has been sufficient for a prototype implementation
of C2M already installed over 34,000 times.

In the next section, we address many of these chal-
lenges with a general approach to performing service-
level network monitoring from edge systems.

3 C2M Framework
Our C2M approach relies onedge system monitors
(ESMs) installed on end systems to detect service-level

Figure 1: Schematic view of our edge detection approach.

problems associated with one or more networks. We
assume that each ESM has access to one or more sources
of performance information (e.g., transfer rates, latency
jitter and dropped packets). We further assume that each
ESM can connect to a distributed storage system to share
information about detected events.

Fig. 1 depicts the C2M architecture. As we discussed
in the previous section, it is infeasible for edge systems
to publish detailed performance data for scalability and
privacy reasons. To address this issue, our approach
detects events using locally gathered performance data
at each ESM (step (1) of the figure) – we discuss this in
Sec. 3.1.

Local event detection presents new design challenges
for determining the scope and severity of events. C2M
addresses this through a decentralized approach to dis-
seminating information about detected events and the
network(s) they impact. In particular, each edge system
publishes its locally detected events to distributed storage
(step (2) in Fig. 1), allowing any other participating host
to examine these aggregate events. Sec. 3.2 discusses
how C2M determines the likelihood that a set of these lo-
cally detected problems corresponds to anetworkevent.

In our architecture, network events can be detected
by the monitors themselves or via third-party analysis.
Each participating host can use the distributed store to
capture events corresponding to its network (step (3)
in Fig. 1), then determine whether these local events
indicate a network event. Alternatively, a third-party
system (e.g., run by an ISP) could use the distributed
store to perform the analysis (step (4) in Fig. 1). Thus
network customers can monitor the level of service they
receive and operators can be informed about events as
they occur, expediting root-cause analysis and resolution.

3.1 Local Detection

The first step in C2M is to analyze local performance
information to determine whether the monitored host is
experiencing a problem. In this section, we discuss the
types of available performance signals and techniques for
detecting local performance events.
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3.1.1 Performance Signals

By pushing detection to end systems located at the edge
of the network, C2M can use a wide variety of service-
level information to diagnose local performance prob-
lems (Table 3). Examples of theseperformance signals
available to any monitored application include flow and
path-quality information such as throughput, loss and
latencies. Our approach can also incorporate service-
specific information to distinguish normal performance
changes from potential network events. For instance,
P2P file-sharing systems can provide information about
whether a transfer has completed and a VoIP application
can indicate whether there was a gap in voice playback.
Our approach can also use system-level information for
local event detection. For example, the operating system
can provide information about throughput consumed
by all running applications, allowing C2M to account
for the performance impact of concurrent applications.
Because these types of information can be gathered
passively, they can be sampled frequently so that events
are detected as soon as they occur.

Finally, to assist with diagnosingnetwork problems,
our approach can incorporate limited active measure-
ments such as traceroutes, pings and available bandwidth
probes.

3.1.2 Local Event Detection

C2M uses signals described in the previous section to
detect local performance events. The goal of local detec-
tion is to provide sufficient information for determining
the scope of the problem, i.e., whether the problem is
local or network-related. To this end, the output of local
detection is a summary for each event describing its type
(e.g., throughput drop, lost video frame), the time of
detection, where in the network it was discovered and
how it was detected.

The choice of event detection technique is strongly
dependent on the service being monitored. For instance,
when monitoring end-to-end throughput for a host (e.g.,
for video streaming), edge detection can identify drops
in transfer rates potentially caused by a network issue
like congestion. In the domain of IPTV [18], video
quality (among other factors) may indicate problems
with the network. Alternatively, a VoIP application may
experience sudden jitter that impacts call quality. Our
approach is agnostic to how these events are detected, so
long as they correspond to service-level problems.

Correlating local events. Performance changes for
monitored services do not necessarily indicatenetwork
problems. In a P2P file-sharing application like Bit-
Torrent, for example, download rates often drop to zero
abruptly. While this may appear at first to be a network
problem, it can be explained by the fact that download-
ing stops when the transfer is complete. Additionally,

information gathered at the operating system level can
assist in evaluating whether changes in performance are
caused by interactions among concurrent applications
(e.g., VoIP and P2P file sharing) instead of the network.

As we remove these confounding factors from our
analysis, we improve our confidence that a detected
problem is independent of the monitored service. Sim-
ilarly, concurrent events occurring inmultiple perfor-
mance signals for a service (e.g., download and upload
rates), further increases our confidence that the event is
independent of the service.

Publishing local events. After detecting a local
event, C2M determines whether other hosts in the same
network are seeing the same problem – this requires
hosts to share local event detection results. To ensure
scalability, distributed storage (e.g., a DHT) is an appro-
priate medium for sharing these events.

3.2 Group Detection

Locally detected events may indicate a network problem,
but each local view alone is insufficient to determine if
this is the case. We now formulate a technique for using
multiple hosts’ perspectives to confidently identify when
a network problem is the likely source.

3.2.1 Corroboration or Coincidence?

To identify events impacting a particular network, C2M
first gathers a list of events reported by monitors in that
network. This can be done periodically or on demand
(e.g., in response to events detected by an ESM). If
multiple events occur as the same time in the same
network, our approach must determine if these events are
likely to be due to the network.

There is a number of reasons why multiple hosts
can detect events concurrently in the same network.
For example, problems can be isolated to one or more
related physical networks due to a router malfunction
or congestion. The problem can also be isolated to
the service driving network activity, e.g., performance
from a Web server or from a swarm of P2P users
sharing content. Finally, simultaneous events can occur
by chance, e.g., due to multiple users experiencing
interference on separate wireless routers.

In the following paragraphs, we discuss how C2M ac-
counts for service-specific dependencies and correlated
events that occur by coincidence. After accounting for
service dependencies, our approach tests the null hypoth-
esis that each host experiences eventsindependentlyand
not due to network problems. By comparing this value to
the observed rate of local events occurring concurrently
for hosts in a network, C2M can determine therelative
likelihood of the detected problem being caused by the
network instead of by chance.

Eliminating confounding factors. The first step in
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the likelihood analysis is to determine the probability
that each host detects local problems independently.
Thus, for each hosth we produce a seriesAh =
{ah,i, ah,i+1, ..., ah,j} for the time periodT = [i, j],
such that at timet, ah,t = 1 if a local event was detected
andah,t = 0 otherwise. During the time periodT , we
use the observed detection rate to estimate the probability
of hosth detecting a local event in any given bucket as:

Lh =
1

j − i

∑j

t=i
ah,t

To control for service-specific dependencies, any set
of hosts whose performance is mutually dependent dur-
ing a time interval(i − 1, i] are treated as a single
logical host during that interval for the purpose of the
analysis. Thus, such hosts do not corroborate each
other’s events. For example, in the case of a P2P file-
sharing application, performance problems seen by peers
that are downloading the same file and connected to each
other arenot treated as independent events.

After this step, our approach must quantify the prob-
ability of n independent hosts detecting an event at the
same timeby coincidence, i.e., the joint probability that
for a given timet,

∑
h ah,t ≥ n.

In general, this is calculated as the union probability of
any one ofN participating hosts seeing an event:

P (
⋃N

h=1
Lh) =

∑N

h=1
P (Lh) −

∑N

j>h=1
P (Lh ∩ Lj) + ...

+ (−1)n−1
P (L1 ∩ ... ∩ LN )

(1)
We are testing the hypothesis that the events are

independent, so we can simplify the union probability:

P (
⋃N

h=1
Lh) =

∑N

h=1
P (Lh) −

∑N

j>h=1
P (Lh)P (Lj) + ...

+ (−1)n−1
P (L1)...P (LN )

(2)
This equation gives the union probability forany

one host seeing an event, i.e., without corroboration.
Generally, this is much larger than the probability that
at leastn hosts (1 < n ≤ N ) in the network will see
concurrent events. To calculate this, we peel off the first
n− 1 terms of Eq. 2. For example, the probability that at
least two hosts will see concurrent events is:

P (
⋃N

j>h=1
Lh ∪ Lj) =

∑N

j>h=1
P (Lh)P (Lj)

−
∑N

k>j>h=1
P (Lh)P (Lj)P (Lk)

+ ... + (−1)n−1
P (L1)...P (LN )

(3)
Effect of corroboration. Intuitively, our confidence

in a detected event being due to the network increases
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Figure 2: CDF indicating how increasing the number of hosts
corroborating an event decreases the likelihood of it occurring
by chance.

with the number of hosts detecting the event and the
number of performance signals indicating the event.
We now quantify the impact of these factors through a
simulation of a region of interest (e.g., a BGP prefix)
with N hosts. Each of these hosts provides multiple
performance signals as described in Sec. 3.1.1. The
probability of hosth witnessing an event in one signal,
Lh1, is chosen uniformly at random in the range0.005 ≤
Lh1 ≤ 0.05. Similarly, the probability of witnessing a
local event concurrently in two signals,Lh2, is chosen
uniformly at random from the range0.005 ≤ Lh2 ≤ Lh1

and the range for three signals,Lh3 is 0.005 ≤ Lh3 ≤
Lh2. We then determine the probability ofc hosts (1 <
c ≤ 5) seeing an event by coincidence for networks with
N = 10, 25, 50 hosts, and we compare this value with
the probability of anyonehost seeing an event. For each
setting, we run 100 randomly generated networks.

Fig. 2 uses a CDF to show the effect of varying the size
of the network on the probability of seeing correlated
events by coincidence. In general, the figure confirms
the intuition that relatively large numbers of monitored
hosts are unlikely to see network events at the same
time simply by coincidence. More concretely, forN =
50, four hosts are an order of magnitude less likely to
see simultaneous events than two hosts. We observed
a similar effect when varying the number of signals
detecting local events – the more signals experiencing
performance events concurrently, the less likely that the
events are occurring by chance. WhenN = 25, e.g., it
is three orders of magnitude less likely that five peers
experience synchronized events in three performance
signals than in one signal.

Relative likelihood. As we discussed at the beginning
of this section, we would like to determine the relative
likelihood that concurrent local events are due to the
network and not happening by coincidence. To quantify
this, we propose using alikelihood ratio, i.e., the ratio of
the observed probability of concurrent events to the prob-
ability of concurrent events happening independently.

5



To derive this ratio, our approach first takes events
seen byn peers in a network at timet, and finds the
union probabilityPu that then (out of N ) peers will
see a performance problem at timet by coincidence.
Next, C2M determines the empirical probability (Pe)
thatn peers see the same type of event (i.e, by counting
the number of time steps wheren peers see an event
concurrently and dividing by the total number of time
steps in the observation interval,I). The likelihood ratio
is computed asLR = Pe/Pu, whereLR > 1 indicates
that detected events are occurring more often than by
coincidence for a given network and detection settings.
We consider these to be events indicative of a network
problem.

3.2.2 Localization

After detecting a local event, our approach can use
information published in event reports to determine the
scope of the problem. If many hosts in a network
detect an event at the same time, it is likely a problem
best addressed by the responsible network operators.
In such cases, our approach should be able to identify
the network affected by the event so as to provide the
necessary information for operators to determine the root
cause and fix the problem [9].

Our approach can localize problems using structural
information about the organization of networks and their
geolocations. For instance, it can use events detected by
hosts in the same routable BGP prefix or ASN, and use
geographic information to localize events to cities and
countries. Further, C2M can use an AS-level Internet
graph to localize network issues to upstream providers
or a router-level graph to isolate problematic routers and
links.

4 Implementing C2M
The previous section described our C2M approach for
detecting events from edge systems. Designing, de-
ploying and evaluating C2M poses interesting challenges
given the absence of a platform for experimentation at
the appropriate scale.

A promising way to address this is by leveraging the
network view of peers in large-scale P2P systems. P2P
systems use decentralization to enable a range of scal-
able, reliable services and are so prevalent that reports
indicate they generate up to 70% of Internet traffic [23].
By avoiding the need to deploy additional infrastructure
and offering hosts that are already cooperating, these
systems are an appealing vehicle for monitoring – one
that grows naturally with the network [6,24].

Based on these advantages, we choose to design
and evaluate a prototype implementation of C2M in
a large P2P system. To guide our design and evalu-
ate its effectiveness at scale, we take advantage of a

Category Number (Pct of total)

Number of users 700,000 (3% of Vuze users)
Countries 200 (78%)
IP addresses 3,100,000
Prefixes 46,685
Autonomous systems (ASes) 7,000
IPs behind middleboxes ≈ 82.6%

Table 2: Summary of our P2P vantage points.

large edge-system dataset comprising traces of BitTor-
rent performance from millions of IP addresses. The
following paragraphs describe this unique dataset, a
collection of confirmed network problems we rely on
for evaluation, and a particular case study we use in
our presentation. We close the section describing the
Network Early Warning System (NEWS), our prototype
edge-based event detection system that uses BitTorrent
as a host application. NEWS is currently deployed as
a plugin for the Vuze BitTorrent client [25], to facilitate
adoption and to piggyback on the application’s large user
base.

Building on P2P systems to provide network moni-
toring is not without limitations. For one, each mon-
itor contributes its view only while the P2P system is
active, which is subject to user behavior beyond our
control. Second, the monitored end system may run
other applications that interfere with the P2P application
and event detection. Finally, some event detection
techniques require access to privileged system calls and
information not accessible to a P2P application. In
the rest of this section, we show that despite these
challenges NEWS can detect network events simply
by passively monitoring BitTorrent, thus validating our
C2M approach.

4.1 Datasets

4.1.1 BitTorrent traces

The realization of NEWS is guided by measurement data
from the Ono plugin for Vuze. Ono implements a biased
peer selection service aimed at reducing the amount of
costly cross-ISP traffic generated by BitTorrent without
sacrificing system performance [10]. Beyond assisting
in peer selection, the software allows subscribing vol-
unteers to participate in a monitoring service for the
Internet. With over 700,000 users today, distributed in
over 200 countries, this system is the largest known end-
system monitoring service. The following paragraphs
describe the data collected; summary information about
Ono users is in Table 2.

Data collected. While observing downloads, Ono
samples transfer rates for each connection once every 5
seconds and cumulative transfer rates (over all connec-
tions) once every 30 seconds. Besides transfer rates,
the system records protocol-specific information such
as whether each peer is “leeching” (both downloading
and uploading) or “seeding” (only uploading), the total
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number of leechers and seeds, as well as information
about the availability of data for each download. The
complete list of collected signals is in Table 3.

This data is reported to a data-collection infrastructure,
which converts data timestamps to a universal time zone.
This collection is for our design and evaluation; it isnot
part of NEWS event detection.2

Edge coverage. Any dataset is subject to limits in
the coverage of its measurement hosts. The dataset
we use currently contains connection information from
users to more than 300,000,000 peer IPs; collectively, its
users monitor more than17 million paths per day. Ono
users covered 500 prefixes within its first two weeks of
deployment, and grew to over 40,000 prefixes (covering
nearly every country) in under two years. Collectively,
these users have established connections to peers in
about 222,000 routable prefixes and 21,800 ASNs.

Besides monitoring many paths, our dataset covers
true edge systems located in portions of the Internet not
accessible to existing distributed research and monitor-
ing platforms. For example, over 80% of the user IPs
correspond to middleboxes. Further, Chen et al. [26]
show that these peers monitor more than 20,000 AS links
not visible to public topology views, and their flows cross
40% more peering AS links than seen from public views.

4.1.2 Confirmed network problems

Evaluating the effectiveness of a network event detection
approach requires a set of events thatshouldbe detected,
i.e., a set of ground-truth events. Among the different
strategies adopted by previous studies, manual labeling
– where an expert identifies events in a network – is the
most common [27].

As one example, we use publicly available event
reports from the British Telecom (BT Yahoo) ISP3 in the
UK. This site identifies the start and end times, locations
and the nature of network problems. During the month
of April, 2009 there were 68 reported problems, which
include both Internet and POTS events.

In addition, we use network problems reported from
a large North American ISP. For nondisclosure reasons,
we cannot report absolute numbers for these events.

Despite its many advantages, the set of labeled prob-
lems for a network is restricted to events that can be
detected by the in-network monitoring infrastructure or
generated by user complaints. Further, human experts
can introduce errors and disagreement, e.g., in reporting
the time and duration of an event. As a result, we can
determine whether confirmed events are detected by our
approach, but we cannot draw strong conclusions about

2Users are informed of the diagnostic information gathered by the
plugin and are given the chance to opt out. In any case, no personally
identifiable information is ever published.

3http://help.btinternet.com/yahoo/help/servicestatus/
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Figure 3: Upload rates for peers in a routable prefix owned by
British Telecom during a confirmed disruption (shaded region).

false positive and negative rates.

4.2 Case study

To assist with the presentation of NEWS, we pick one
of the events from the previous section. Specifically, we
demonstrate how NEWS detects the following problem
in BT Yahoo: On April 27, 2009 at 3:54 PM GMT,
the network status page reported, “We are aware of a
network problem which may be affecting access to the
internet in certain areas...” The problem was marked as
resolved at 8:50 PM.

Fig. 3 presents a scatter plot timeline of upload rates
for peers located in the same routable prefix in BT Yahoo
(81.128.0.0/12) during this event, which is depicted
as a shaded region. Each point in the graph repre-
sents an upload-rate sample for a single peer; different
point shapes represent signals for different peers. The
figure shows that multiple peers experience reduced
performance between 10:54 and 16:54, while another
set of peers see a significant drop in transfer rates at
14:54. These are consistent with the reported event,
when accounting for delays between the actual duration
of an event and the time assigned to it by a technician.
Further, we see that there were two distinguishable
network problems corresponding to the single generic
report.

4.3 Network Monitoring from BitTorrent

In this section, we discuss key design aspects of
NEWS, a prototype edge-system monitor for BitTorrent.
Throughout this discussion we use the confirmed BT
Yahoo event in Fig. 3 to explain our design choices.
With respect to the design challenges listed in Sec. 2,
we address scalability and granularity through our local
event detection and group corroboration approach;
the remaining issues of privacy, trust and adoption
are covered in the subsequent sections. We provide
low-level implementation details in Sec. 6.

4.3.1 Local Event Detection

Any C2M system must define what constitutes a service-
level event that could be due to a network problem.
In NEWS, we define these to be unexpected drops in
end-to-end throughput for BitTorrent. Monitoring for
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Figure 4: Moving averages facilitate identification of separate
network events affecting transfer rates for two groups of peers
during the same period shown in Fig. 3.
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Figure 5: Timeline of the maximum performance drops for at
leastn peers (moving average window size of 10,n = 1, 3, 7).
Deviations for any one peer are highly variable; those for seven
peers rarely capture any performance drops. The peaks in
deviations for three peers correspond to confirmed events.

this type of event corresponds to detecting edges in
the throughput signal; specifically, we detect downward
edges in the time series formed by BitTorrent throughput
samples.

Event detection in BitTorrent. NEWS employs
the simple, but effective, moving average technique for
detecting edges in BitTorrent throughput signals. Given
a set of observationsV = {v1, v2, ..., vn}, wherevi is the
sample at timei, the technique determines the mean,µi,
and the standard deviation,σi of signal values during the
window [i − w, i]. The moving average parameters are
the observation window size for the signal (w) and the
threshold deviation from the mean (t · σ) for identifying
an edge. Given a new observation valuevi+1 at time
i + 1, if |vi+1 − µi| > t · σi, then an edge is detected.

To demonstrate visually how moving averages facili-
tate edge detection, Fig. 4 plots the 10-minute averages
of upload rates for two groups of peers from Fig. 3.
Using these averages, it becomes clear that there is a
correlated drop in performance among a group of three
peers at 14:54 (top graph), while the bottom graph shows
a series of performance drops, the first near 10:54 and the
last around 13:00. Both groups of peers recover around
17:30.

The window size and deviation threshold determine

how the moving average detects events. Tuning the
window size (w) is analogous to changing how much of
the past the system remembers when detecting events.
Assuming that the variance in the signal is constant
during an observation window, increasing the number of
samples improves our estimate ofσ and thus detection
accuracy. In general, however,σ varies over time, so
increasing the window size reduces responsiveness to
changes inσ.

The detection threshold (t · σ) determines how far a
value can deviate from the moving average before being
considered an edge in the signal. While usingσ naturally
ties the threshold to the variance in the signal, it is
difficult a priori to select a suitable value fort. To help
understand how to set this threshold, Fig. 5 shows how
deviations behave over time for peers experiencing the
network problems illustrated in Fig. 4, using a window
size of 10. Specifically, each curve shows the maximum
drop in performance (most negative deviation) seen by
at leastn peers in the network at each time interval.
Because these deviations vary considerably among peers,
we normalize them using the standard deviation for the
window (σ). If our approach to local detection is viable,
there should be some threshold (t · σ) for identifying
peers’ local events that correspond to network ones.

The top curve, wheren = 1, shows that the maximum
deviations from any one peer produces a noisy signal
that is subject to a wide range of values, and features
of this signal do not necessarily correspond to known
network problems. The bottom curve, wheren = 7,
shows that it is rarely the case that seven peers all see
performance drops simultaneously, so features in this
signal are not useful for detecting events during this
period. Last, the middle curve, wheren = 3, produces
a signal with a small number of peaks, where those
above2.5σ correspond to real network problems. This
suggests that there are moving-average settings that can
detect confirmed problems in this network. In Sec. 4.3.2,
we show how NEWS can extract network events from a
variety of settings, using the analysis from Sec. 3.2.

Confounding factors. Downward edges in the
throughput signal provided by a host BitTorrent
application are not necessarily due to network events
(Sec. 3.2). Thus, when monitoring BitTorrent it
is essential to use service-specific information to
distinguish expected behavior from network events.

Table 3 lists the information available when monitor-
ing BitTorrent. NEWS uses several of these signals to
eliminate well known confounding factors. For instance,
NEWS tracks the transfer states of torrents and accounts
for the impact of download completion. To eliminate
performance problems due to the application (as opposed
to the network), such as missing torrent data or high-
bandwidth peers leaving a swarm, all peers connected
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Signals General to P2P Systems
Overall upload rate Overall download rate
Per-connection upload rate Per-connection download rate
Connected hosts RTT latencies
Signals Specific to BitTorrent
Availability Connected seeders/leechers
Number available leechers Number available seeds
Number active downloads Number active uploads

Table 3: Signals available when monitoring from BitTorrent.

to the same torrent are treated as the same logical peer.
As another example, NEWS accounts for correlations
between the number of peers connected to a user and the
average transfer rate for each peer.

NEWS also requires multiple performance signals to
see concurrent events before publishing an event. As we
discussed in Sec. 3.2, improving our confidence that the
event is independent of the application also improves our
confidence that it is caused by the network.

When detecting an event, NEWS must not only de-
termine that there is a problem witha network, but
specifically identifythe host’s networkas the problem. If
a host’s connections were biased toward a remote AS, for
example, then it would be unclear if detected problems
were specific to the host’s AS or the biased one. To
explore this issue, we determine the number of routable
prefixes visited by each peer’s connections during a 19-
day period. We find that the vast majority of peers
(90%) connect to peers in five or more prefixes during
the period; the median is 169. This range indicates that
it extremely unlikely that problems in remote networks
would be falsely interpreted as problems in the host’s
network.

4.3.2 Group Corroboration

As discussed in Sec. 3.2, after detecting local events,
C2M determines the likelihood that the events are due to
a network problem. Thus, once a local event has been
detected, NEWS publishes local event summaries to
distributed storage so that participating hosts can access
detected events in real time.

We now apply this likelihood analysis to the events
in BT Yahoo as described in Sec. 4.2. Recall that we
would like to detect synchronized drops in performance
that are unlikely to have occurred by chance. To that
end, we determine the likelihood ratio,LR = Pe/Pu,
as described in Sec. 3.2.1. For this analysis, we use one
month of data to determinePe andPu.

Figure 6 depicts values forLR over time for BT Yahoo
using different local event detection settings. In both
figures, a horizontal line indicatesLR = 1, which is
the minimum threshold for determining that events are
occurring more often than by chance. Each figure shows
theLR values for up to three local signals (e.g., upload
and download rates) that see concurrent performance
problems for each peer. As previously mentioned, the
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Figure 6: Timeline showing the likelihood ratio for different
moving average settings. In each case, there are few events
with LR > 1, and nearly all correspond to confirmed events.

more signals seeing a problem, the more confidence we
can attribute to the problem not being the application.

In Fig. 6 (top), we use a detection threshold of1.5σ
and window size of 10. Using such a low threshold not
surprisingly leads to many cases where multiple peers
see synchronized problems (nonzero LR values), but they
are not considered network problems becauseLR < 1.
Importantly, there are few values aboveLR = 1, and the
largest corresponds to a performance drop potentially
due to congestion control, since it occurs when peers
have simultaneously saturated their allocated bandwidth
after the confirmed network problem is fixed.

Fig. 6 (bottom) uses a detection threshold of2.2σ and
window size of 20. As expected, the larger threshold
and window size detect fewer events in the observation
window. In this case,all of the three values that
appear aboveLR = 1 correspond to the known network
problems, and they are all more than twice as likely to be
due to the network than coincidence.

These examples demonstrate that our approach is
able to reliably detect different problems with different
parameter settings. They also suggest that the approach
generally should usemultiple settings to capture events
that occur with different severity and over different time
scales. As such, the likelihood ratio can be seen as
a single parameter that selects detection settings that
reliably detect network problems.

4.3.3 Privacy and Trust

Any implementation of a network monitoring service is
subject to important considerations such as privacy and
trust. To ensure user privacy, NEWS does not publish
any information that can be used to personally identify
the user. Rather, it reports only detected events and as-
signs per-session, randomly generated IDs to distinguish
events from different users.

While this approach to ensuring privacy is appealing
for its simplicity, it opens the system to attack by
malicious parties. For example, one ISP may wish to
“poison” the system by introducing false event reports
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(a) Confirmed outage.
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(b) Unconfirmed non-outage event.
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(c) Unconfirmed outage.

Figure 7: Timelines depicting events (centered in the figures) affecting transfer rates for peers in a North American ISP.

for a competitor’s ISP. There are several ways to harden
an implementation against such attacks. First, we include
each host’sLh in the event reports, and recall that larger
Lh leads to a smaller contribution to the likelihood
(Eq. (3)). This mitigates the effect of an attacker gener-
ating a large volume of false event reports using NEWS.
While an attacker could forgeLh, any participating host
could detect that it is inconsistent with the number of
reports placed in the distributed store. In addition, simple
rate-limiting can be applied to a centralized attacker
and a Sybil-like attack can be mitigated with secure
distributed storage [28].

4.3.4 Adoption Incentives

In general, our approach does not require incentives
for adoption, e.g., if applications are deployed with
instrumentation by default. For our prototype system
in BitTorrent, however, the deployment model relies on
users installing third-party software.

Based on the success of Ono [10], we propose using
a similarmutual benefitincentive model in which users
contribute their network view (at essentially no cost) in
exchange for early warnings about network problems
that impact performance. As these problems may in-
dicate changes in ISP policies, violations of SLAs or
ISP interference, such warnings provide a mechanism for
users to ensure that the Internet service they pay for is
properly provided. This has been sufficient incentive for
NEWS, which has already installed over 34,000 times.

5 Evaluation

We use one month of data gathered from BitTorrent
users to answer key questions about large-scale edge-
system network event detection. We first demonstrate
the effectiveness of our approach using confirmed events
from two large ISPs. We show that using a popular P2P
service as a host application can offer sufficient coverage
for edge-system event detection and present a summary
of results from our detection algorithm on networks
worldwide. We close the section with an evaluation of
the robustness of our approach to parameter settings and
an analysis of the overhead for participating hosts.

Affected customers Pct of total events Detected Possible

C ≥ 10000 53% 50% 38%
10000 > C ≥ 1000 40% 0% 67%
C < 1000 7% 0 0

Table 4: Comparison with events from a North American ISP.

5.1 Effectiveness

To evaluate the accuracy of our approach we compare its
results against labeled network problems from two ISPs,
our ground truth. For the purpose of comparing these
datasets, if an event was detected within 2 hours of a
reported time, we count it as being the same event.

For BT Yahoo, of the 181 events detected by our
approach, 54 are confirmed network problems – covering
nearly 80% of the labeled events. Our edge-based
approach detected an additional 127 events; although
these are not confirmed problems, we caution against
inferring false positive rates, as the reported events
are based on those detectable from existing monitoring
systems. Still, even in the unlikely case that these
additional events are not real, the average false alarm rate
(just over 4 events per day) is manageable.

For a North American ISP, our approach detected
a variety of performance events, some of which were
confirmed outages. For cases where there was a drop
in performance but not an outage, we were not able
to obtain ground truth information. Figure 7 shows a
sample of three cases of events detected by our approach:
(a) an confirmed outage, (b) a non-outage performance
event (unconfirmed) and (c) an unconfirmed outage.
Table 4 presents summary results for this ISP. Our
approach was able to detect half of the largest outages
(column 3). In column 4, we show the number of
outages that appeared to affect monitored hosts, but not
in sufficient numbers to validate the event. In addition
to these events, our approach detected 41 events during
the 1-month period. Unfortunately, the ISP did not have
sufficient information to confirm or deny them.

5.2 Coverage

Edge-system event detection requires a sufficient number
of peers to concurrently use a network for the purpose
of corroboration. To evaluate whether using a popular
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(a)

ISP Users Events

Deutsche Tel. 6760 69
HTP 3652 112
HanseNet 3216 17
Neuf Cegetel 2821 108
Arcor 2245 29
Cableuropa 1999 245
Proxad/Free 1769 176
France Tel. 1688 31
Tel. Italia 1651 20
Telefonica 1337 27

(b)

ISP Users Events

Cableuropa 1999 245
BTnet UK 1277 182
Proxad/Free 1769 176
HTP 3652 112
Neuf Cegetel 2821 108
Deutsche Tel. 6760 69
Telewest 237 50
Pakistan Tel. 729 46
Comunitel 197 45
Mahanagar Tel. 454 42

Table 5: Top 10 ISPs by users (a) and by events (b).

P2P application as a host application can offer sufficient
coverage for edge-system event detection, we calculated
the maximum number of peers simultaneously online
for each network in our dataset. Figure 8 plots a CDF
of these values for each routable prefix and ASN. On
average, the number of simultaneous online peers per
routable prefix is 3 and per ASN is 7. Even though
our installed base of users represents less than 0.4% of
all BitTorrent clients, we find that this offers sufficient
coverage (three or more peers concurrently online) for
more than half of the ASNs that we study.

5.3 Worldwide events

Having shown the effectiveness of NEWS, this section
characterizes network events that it detects worldwide,
using a thresholdLR = 2 (as guided by Fig. 6).
For a one-month period, NEWS detected events in 38
countries across five continents, emphasizing how edge-
based detection can achieve broad network coverage
worldwide. In Table 4(a), we list the top 10 ISPs in terms
of the number of users participating in our study (second
column), and the number of events detected in each of
these ISPs (third column).

Because different networks provide different quality
of service [29], increasing the number of peers should
not necessarily increase the number of events detected.
As the table shows, there is indeed little correlation
between the number of vantage points in a network and
the number of performance events that our approach
detects.

Table 4(b) shows the top 10 ISPs in terms of the
number of events detected, covering ISPs of varying size
in Europe and Asia. We note that with the exception of
the top three ISPs, our approach generates fewer than
four detected events per day. Thus, a deployment of our
approach should report events at a reasonable rate – one
that will not overwhelm (or annoy) network operators
and users.

5.4 Cross-network events

An advantage to our C2M approach is that it is uniquely
positioned to detect network problems affecting multiple

Relationship Min. ASNs # cases # countries

Customer-Provider 2 370 5
Customer-Provider 3 7 2
Peer-Peer 2 487 7

Table 6: Number of cross-network events (and countries
affected) as inferred from single-network events. The first
column indicates the AS relationship and the second column
specifies the minimum number of affected ASes.

Time (GMT) Provider(s) Affected ASes Country

Apr 16, 13:35 8218 15557,12876,12322 FR
Apr 17, 12:40 1267 16338,3352,6739 ES
Apr 30, 01:15 10396,7910 12357,16338,12715 ES

Table 7: Example cross-network events corresponding to the
second row of Table 6.

ISPs, e.g., due to provider or peering link issues. As
we discussed in Sec. 3.2.2, one can use AS relationships
and geolocation information to isolate the scope of cross-
network events.

We focus on cross-network events due to issues with
upstream providers or peers. To this end, we find
events that occur in multiple ASNs at the same time,
then determine which of these ASNs have a peering
relationship or identical providers (based on the AS
topology generated by Chen et al. [26]). Events that
occur within 30 minutes of each other are considered the
same, and we conservatively consider AS relationships
only for those ASNs located in the same country.

Table 6 summarizes our results. The first row indicates
that when searching for at least two ASNs with the same
provider, there are 370 cases in five countries. In the
second row, we use a more restrictive search where we
require that at least three ASNs having the same provider
see synchronized network events – such events are much
rarer; a sample of them is provided in Table 7. Finally,
the last row indicates that there is a significant num-
ber of peering ASNs that see synchronized problems.
Discovering such potential problems is unique to our
approach – these links are often invisible to existing
Internet monitoring techniques that do not rely on edge-
system monitors [26].

5.5 Robustness

As discussed in Sec. 4.3.2, the likelihood ratio (LR)
can be seen as a parameter for distillingnetworkevents
from locally detected ones. As such, the number of
network events detected using anLR threshold should
not significantly change with different local detection
settings.

Fig. 9 plots CDFs ofLR values for BT Yahoo during
one month. In Fig. 9(a), we plotLR values forW = 10
andσ = 1.5 and Fig. 9(b) plots the same forW = 20
andσ = 2.2. Settings for small deviations and window
sizes yield a larger number of ratio values greater than
one (2.15% of the time) whereas larger deviations and
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Figure 9: Likelihood ratios are robust to various parameter settings; they detect
network problems at most 2.15% of the time for small deviations and window
sizes (a) and at most 0.75% of the time for larger ones (b).

window sizes yields a smaller number of them (0.75%).
Generally, such cases (where concurrent events occur
more often than chance) are extremely rare for signif-
icantly different detection parameters, suggesting that
LRs are indeed robust to detection settings.

5.6 Overhead for Participating Hosts

NEWS passively monitors performance and uses low-
cost event-detection techniques, so there is negligible
overhead for detecting local events. The primary
sources of overhead are calculating the union probability
(CPU/memory) and sharing locally detected events
(network). We now demonstrate that these overheads are
reasonably low.

For determining the union probability, the formula
in Eq. (3) specifiesnCn/2 (n choosen/2) operations,
wheren is the number of hosts in the network having
a nonzero probability of detecting an event.4 We use
Miller’s algorithm [30], an optimal trade-off between
memory, O(n), and computation,O(n3). While a
substantial improvement over a naı̈ve implementation, its
processing overhead can still be significant for largen
(in our experience,n > 50). To bound this overhead,
we limit the number of hosts used in the computation
to the H hosts with the largestLh. In this way, we
conservatively estimate an upper bound forPu for the
full set ofn hosts.

The other source of overhead is using distributed
storage to share locally detected events. While this
overhead is variable and dependent on factors including
the target network and detection settings, we found it
to be reasonably low for many settings. For example,
our analysis shows that read and write operations are
performed by each host with average frequencies on the
order of several minutes, and in the worst case once every
30 seconds.

6 Deployment Details
The NEWS plugin for Vuze is written in Java and
the core classes for event detection comprise≈1,000

4When Lh = 0 for a host, it does not contribute to the union
probability. Thusn is the number of hosts seeing at least one event.

LOC. Released under an open-source (GPL) license,
our plugin has been installed over 34,000 times since
its release in March, 2008. In the rest of this section,
we discuss details of our NEWS implementation in its
current deployment. In addition to providing specific
algorithms and settings that we use for event detection,
our discussion includes several lessons learned through
deployment experience.

Local detection. NEWS detects local events using
the moving average technique discussed in Sec. 4.3.1,
which uses the window size (w) and standard-deviation
multiplier (t) parameters to identify edges in BitTorrent
transfer rate signals. In practice, we found that BitTor-
rent often saturates a user’s access link, leading to stable
transfer rates and smallσ. As a result, edges in the
performance signal occur even when there are negligible
relative performance changes. We address this issue in
NEWS by including a secondary detection threshold that
requires a signal value to change by at least 10% before
detecting an event.

Throughput signals also undergo phase changes, dur-
ing which a moving average detects consecutive events.
NEWS treats these as one event; if enough consecutive
events occur, we assume that the signal has undergone a
phase change, and reset the moving average using only
signal values after the phase change.

After detecting a local event, NEWS generates a report
containing the user’s per-session ID,w, t, a bitmap
indicating the performance signals generating events, the
current event detection rate (Lh), the time period for the
observed detection rate, the current time (in UTC) and
the version number for the report layout. The current
report format consumes 38 bytes.

The plugin disseminates these reports using the
Kademlia-based DHT [31] built into Vuze. This DHT
is a key-value store that stores multiple values for
each key. To facilitate group corroboration of locally
detected events, we use network locations as keys and
the corresponding event reports as values.

In our deployment we found variable delays between
event detection and reporting, in addition to significant
clock skew. To address these issues, NEWS uses NTP
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servers to synchronize clocks once per hour, reports
event times using UTC timestamps and considers any
events that occurred within a five-minute window when
determining the likelihood of a network event occurring.

Group corroboration. After NEWS detects a local
event, it performs corroboration by searching the DHT
for other event reports in each of its regions – currently
the host’s BGP prefix and ASN.5 Before using a report
from the DHT for corroboration, NEWS ensures that: (1)
the report was not generated by this host; (2) the report
was generated recently; and (3) the standard-deviation
multiplier for detecting the event was not less than the
one used locally.

If these conditions are met, the report’s ID is added
to the set of recently reported events. If a peer finds
events from three or more other peers at the same time (a
configurable threshold), it then uses Eq. 3 to determine
the likelihood of these events happening by coincidence.
Using the information gathered from events published to
the DHT over time, the peer can calculate the likelihood
ratio described in Sec. 4.3.2. If the likelihood ratio is
greater than 2 (also configurable), the monitor issues a
notification about the event.

NEWS peers read from the DHT only after detecting
a local event, in order to corroborate their finding. To
account for delays between starting a DHT write and the
corresponding value being available for reading, NEWS
sets a timer and periodically rechecks the DHT for events
during a configurable period of interest (currently one
hour).

Third-party interface. Following our incentive
model, NEWS keeps end-users informed about detected
service-level events (Sec. 4.3.4.) Beyond end-users,
network operators should be notified to assist in
identifying and fixing these problems. With this in mind,
we have implemented a DHT crawler (NEWS Collector)
that any third party can run to collect and analyze
local event reports. To demonstrate its effectiveness,
we built NEWSight – a system that accesses live
event information gathered from NEWS Collector and
publishes its detected events through a public Web
interface. NEWSight also allows network operators to
search for events and register for notifications of events
detected in their networks. Operators responsible for
affected networks can confirm/explain detected events.

Whereas NEWS crowdsources event detection,
NEWSight can be viewed as an attempt at crowdsourcing
network event labeling. Confirmed events can help to
improve the effectiveness of our approach and other
similar ones – addressing the paucity of labeled data
available in this domain [27]. We are currently beta-
testing this interface with ISPs; the interface and its data

5Vuze already collects the host’s prefix and ASN; we are currently
adding support for whois information.

are publicly available.

7 Related Work
As an approach to detecting service-level network events
from end systems located at the edge of the network,
C2M is related to a variety of prior work. Most previous
efforts on network event detection have focused on core
networks and GREN environments [2,11,32,33].

Several researchers have proposed using end-host
probing to identify routing disruptions and their effect
on end-to-end services [3, 7, 16, 17]. A number of
recent efforts are exploring new monitoring techniques
using distributed research platforms (e.g., PlanetLab
or NIMI2) as vantage points. These approaches are
inherently limited by the relatively small number
of nodes available for experimentation and the fact
that they are not representative of the larger Internet.
While most of these hosts are deployed in GREN
environments, often close to the core, much of the
Internet’s growth occurs beyond their reach, such as
behind NAT boxes and firewalls or in regions of the
Internet not exposed by public BGP feeds [26, 34, 35].
C2M uses a fundamentally different approach that
pushes detection to the edge-systems where services are
used.

NEWS passively monitors BitTorrent to identify
service-level network events. Previous work has
suggested that the volume and breadth of P2P systems’
natural trafficcould be sufficient to reveal information
about the used network pathswithout requiring any
additional measurement overhead [6,24]. PlanetSeer [6]
uses passive monitoring of a CDN deployed on
PlanetLab, but relies on active probes to characterize
the scope of the detected events. Casado et al. [35]
and Isdal et al. [36] use opportunistic measurement
to reach these edges of the network, by leveraging
spurious traffic or free-riding in BitTorrent. Unlike
these efforts, NEWS takes advantage of the steady
stream of natural, (generally) benign traffic generated by
BitTorrent and does not require any active measurement.
While NEWS shares many goals with DIMES [22] and
Neti@home [37], it uses immediate incentives to ensure
significantly wider adoption than what is possible with a
purely altruistic model.

8 Conclusion
The user experience for networked applications is be-
coming an important benchmark for customers and net-
work providers. To assist operators with resolving such
issues in a timely manner, we argued that the most
appropriate place for monitoring service-level events is
at the end systems where the services are used. We pro-
posed a new approach, calledC2M for Crowdsourcing
Cloud Monitoring, based on pushing end-to-end perfor-
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mance monitoring and event detection to the end systems
themselves. We presented a general framework for
C2M systems and demonstrated its effectiveness using
a large dataset of diagnostic information gathered from
peers in the BitTorrent system, along with confirmed
network events from two different ISPs. We demonstrate
that our crowdsourcing approach allows us to detect
network events worldwide, including events spanning
multiple networks. Finally, we designed, implemented
and deployed a BitTorrent extension that performs real-
time event detection using our approach – currently
installed more than 34,000 times.
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