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Abstract

The user experience for networked applications is becoming a key benchmark for
customers and network providers when comparing, buying and selling alternatiice se
There is thus a clear need to detect, isolate and determine the root canede®k events

that impact ende-end performance and the user experience so that operators can resolve
such issues in a timely manner. We argue that the most appropriate plageniiring

these service-level events is at the end systems where the services are useghosedapr

new approach to enable and support this: Crowdsourcing Cloud Monitoring (C2M

This paper presents a general framework for C2M systems and demonstrates its
effectiveness using a large dataset of diagnostic information gathemadBitTorrent

users, together with confirmed network events from two ISPs. We demonstrate that our
crowdsourcing approach allows us to detect network events worldwide, including events
spanning multiple networks. We discuss how we designed, implemented and deployed an
extension to BitTorrent that performs real-time network event detection using ou
approach. It has already been installed more than 34,000 times.
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Abstract effective at detecting events that affect large numbers

The user experience for networked applications isof customers and services, these approaches can miss
becoming a key benchmark for customers and networlsilent failures (e.g., incompatible QoS or ACL settings)
providers when comparing, buying and selling alterna-and their impact on services for customers [8]. Further,
tive services. There is thus a clear need to detect, isolatexisting end-to-end monitoring approaches require active
and determine the root causes of network events thaneasurements that do not scale to the vast number of
impact end-to-end performance and the user experiencglements at the edge of the network.
so that operators can resolve such issues in a timely Detecting service-level network events from end sys-
manner. We argue that the most appropriate placéems at the network edge poses a number of interesting
for monitoring these service-level events is at the endcchallenges. First, any practical approach must address
systems where the services are used, and propose a nélwe scalability constraints imposed by collecting and
approach to enable and support this: Crowdsourcingrocessing information from potentially millions of end
Cloud Monitoring C2M). systems [9]. Second, to assist operators in addressing

This paper presents a general framework for C2Mproblems promptly, events should be detected quickly
systems and demonstrates its effectiveness using a lardiee., within minutes) and isolated to specific network
dataset of diagnostic information gathered from Bit-locations (e.g., BGP prefixes). Finally, the approach
Torrent users, together with confirmed network eventsmust facilitate a broad (Internet-scale) deployment of
from two ISPs. We demonstrate that our crowdsourcingedge-system monitors, ensure user privacy and provide
approach allows us to detect network events worldwidetrustworthy event detection information.
including events spanning multiple networks. We dis- We address these challenges through a new approach
cuss how we designed, implemented and deployed ato network event detection — pushing end-to-end per-
extension to BitTorrent that performs real-time network formance monitoring and detection to the end systems
event detection using our approach. It has already beethemselves. We call this approaCM for Crowdsourc-

installed more than 34,000 times. ing Cloud Monitoring. By crowdsourcing network mon-
. itoring, participating hosts can handle the magnitude of
1 Introduction data required for detecting events in real time, at the scale

The Internet is increasingly used as a platform for diverseof millions of monitors. In addition, using end systems
distributed services such as VoIP, content distributionprovides flexibility in the types of monitoring software
and IPTV. Given the popularity and potential for revenuethat can be installed inside or alongside services, facili-
from these services, theirser experiencéias become tating immediate and incremental deployments. Finally,
an important benchmark for service providers, networkwe discuss general techniques to ensure the reliability of
providers and end users [1]. detection results without violating user privacy.
Perceived user experience is in large part determined This paper makes the following contributions. Sec. 2
by the frequency, duration and severity of network eventgdentifies challenges faced by any edge-system monitor-
that impact a service. There is thus a clear need to detedt)g approach and discusses potential solutions. Next, we
isolate and determine the root causes of these servicaddress the general problem of how to detect network
level network events so that operators can resolve sucperformance events from the edge (Sec. 3). Specifically,
issues in a timely manner, minimizing their impact on we develop a framework for our C2M approach in which
revenue and reputation. each end system performs a significant portion of event
We argue that the most effective way to detect servicedetection locally, then uses a distributed approach for
level events is by monitoring the end systems where the€orroborating these events.
services are usedn this work, we develop a practical Demonstrating the effectiveness of any edge-based
approach to monitoring that enables real-time detectionapproach is challenging due to the lack of representative
of network events impacting the user experience fotestbeds and the sheer scale and diversity of networks
services that reach the network edge. worldwide. In Sec. 4, we address this issue using a large
Most previous work focuses on monitoring core net-dataset of diagnostic information from edge systems
works [2-5] or probing from global research and ed-running the Ono plugin [10] for the Vuze BitTorrent
ucation network (GREN) environments [6, 7]. While client. Guided by confirmed network events that they



observed, we design and implement tietwork Early | I’:’F'f"’a‘:'? , | Eventype [ Coverage [ Online? |
monltorlr‘lg

Warning SySte.m (NEW531 BitTorrent extension that Failures[3,7,16,17] Network Core Real time
performs real-time event detection. Chronic event$g] Network Core Offline
. . IPTV [18] Network/Service Core-Edge Offline
We evaluate the effectiveness of our approach in—gren monioring
Sec. 5. In addition to comparing NEWS-detected| Al pairs (active)[19] | Network/Service GREN O(h) time
ith fi d d h All pairs (passive]6] Service GREN Real time
events wit . confirmed ones, we demonstrate that our Distributed probe§7] | Network GREN-Edge | O(n) time
crowdsourcing approach allows us to detect network C2m
Services/OS (passive) | Service Edge-Edge Real time

events worldwide, including events spanning multiple
networks. Our approach is robust to various parametefaple 1: Comparison of detection approaches. For systems
settings and incurs reasonably low overhead. where detection times depend on system dizis,the number

NEWS has already been installed 34,000 times,of monitors andh is the number of monitored networks.
demonstrating not only the feasibility of our approach

for a real application, but also that there are appropriatgyork performance from end systems; however, because
incentives for widespread adoption beyond BitTorrentiney rely at least in part on active measurements they
(Sec. 6). We are currently working with developers of 5y |imited in scale and scope to GREN [6, 13] or
popular software to instrument additional applications.enterprise [14, 15] environments. Our approach relies on
To assist with quickly resolving problems causing passive measurements of running services so that it can
detected network events, we have implementecgcaka to end systems located at the edge of the Internet.
NEWSight — a system that accesses live event finally, some network monitoring tools generate flows
information and publishes its results in real time. that simulate protocols used by edge systems [1]. While

We are beta-testing this public interface with ISPs. these can indeed detect end-to-end performance prob-
lems, current deployments require controllable, dedi-
2 C2M Advantages and Challenges cated infrastructure and are inherently limited to rela-

The user experience for networked applications (e.g.tively small deployments in PoPs. Our C2M approach
Web sites, VoIP and video streaming) is becoming an imdoes not require any new infrastructure, nor control of
portant benchmark for customers and network provider£nd systems, and thus can be installed on end systems at
when comparing, buying and selling alternative ser-the edge of the network.
vices [1]. Monitoring service-level events — ones that There is a number of important issues that must be
impact end-to-end performance and the user experienceddressed in the context of C2M.
— is thus important for users, service providers and Scalability. As one moves toward the edge of the
network operators. Further, correcting these issues in Betwork, the number of network elements — and thus
timely manner requires that operators know where, wherthe opportunities for failures — rapidly increase. With
and why they are occurring in real time. more than 1 billion Internet users worldwide, an edge
To detect service-level events, we propose using monitonitoring system that includes even a small fraction
toring software that runs inside or alongside applicationsf the population must support millions of hosts. As
that use or provide the corresponding services — on enguch, collecting and processing raw performance data
systems. In particular, our goal is to detect service-leveHsing a centralized infrastructure is neither scalable nor
events from the edges of the network in real time. practical. Extending existing network monitoring ap-
Table 1 summarizes how the C2M approach differsProaches to edge systems is nontrivial: deployments in
from previous work in network event detection. The Network edge devices (e.g., DSL modems) are difficult or
vast majority of previous work focuses on detectingimpossible without vendor support; moreover, gathering
network events in or near backbone links, using datzgnd processing data for detecting events in real time may
gathered from layer-3 and below [2,4, 5,11, 12]. While réquire costly dedicated infrastructure [20].
such device-level monitoring can detect many types of We propose a decentralized approach to event detec-
events (e.g., outages or packet loss), existing techniquég-m that relies on each system detecting local service-
require active measurements that do not scale to the larg@Vel performance problems as potential network events.
number of elements at the network edge. Further, thesBY Processing performance data at the edge systems, our
monitors may miss silent failures (e.g., incompatible @Pproach facilitates an immediately deployable, scalable
QOS/ACL settings) and their impact on performance.monitoring system.
In contrast, our approach focuses on end-to-end perfor- Granularity . Any real-time network monitoring sys-
mance problems, which vary among applications. tem must quickly identify network events and determine

Other research projects have proposed monitoring neﬁ-he affected network region. The time to detect a problem
is largely dependent on how frequently a system can

Lhttp://aqualab.cs.northwestern.edu/projects/news/géivim| sample performance information. By gathering and




Edge system monitor (ESM)

processing performance information locally at each end i p—
system, C2M can detect events with fine granularity e
(on the order of seconds) and relatively low CPU and
memory overhead. To isolate the scope of network
events, we use multiple locally detected events from the T—@lw[ 7/\\
same network location. These network locations can ; -
include publicly available locations such as BGP prefixes e '
and AS numbers, or richer information such as AS
relationships and topologies for cross-network problems.
Privacy. Any implementation of an edge-based net-
work monitoring service is subject to privacy concerns.
In previous work that used control-layer information
(e.g., BGP updates), network probes (e.g., traceroutes)
or aggregate flows to identify network events, privacy isProblems associated with one or more networks. We
ensured because no personally identifiable informatior@ssume that each ESM has access to one or more sources
(P||) is exchanged_ However, inan edge_based approacﬂf performance information (e.g., transfer rates, |atency
that relies on corroboration among multiple vantageiitter and dropped packets). We further assume that each
points to confirm and isolate events, users must sharESM can connect to a distributed storage system to share
information about their network views. We demonstrateinformation about detected events.
how edge-based monitoring can remain effective without Fig. 1 depicts the C2M architecture. As we discussed
publishing any PII. in the previous section, it is infeasible for edge systems
Trust. Most existing network event detection ap- to publish detailed performance data for scalability and
proaches are implemented as closed systems, wheg#ivacy reasons. To address this issue, our approach
third parties are unable or highly unlikely to affect detects events using locally gathered performance data
the accuracy or validity of detected problems. In theat each ESM (step (1) of the figure) — we discuss this in
context of edge-based detection, an open, decentralizegec. 3.1.
approach is vulnerable to attack. For example, one ISP Local event detection presents new design challenges
may wish to “poison” the system by introducing false for determining the scope and severity of events. C2M
reports of events detected by users in a competitor’s ISRiddresses this through a decentralized approach to dis-
We propose several ways to harden an implementatioseminating information about detected events and the
against such attacks. network(s) they impact. In particular, each edge system
Adoption. Any network event detection approach publishes its locally detected events to distributed gfora
is limited by the coverage of its deployment. In the (step (2) in Fig. 1), allowing any other participating host
case of C2M, there is no cost to deploy and there aréo examine these aggregate events. Sec. 3.2 discusses
essentially no limitations as to where participating hostshow C2M determines the likelihood that a set of these lo-
can be located; however, the main challenge is gainingally detected problems corresponds teetworkevent.
widespread adoption. One can address this issue by In our architecture, network events can be detected
incorporating the software into an OS, providing it as aby the monitors themselves or via third-party analysis.
background service, and/or distributing it as part of net-Each participating host can use the distributed store to
worked applications. In deployments where users mustapture events corresponding to its network (step (3)
install new software, an appropriate incentive model isin Fig. 1), then determine whether these local events
essential. Existing approaches to network monitoringindicate a network event. Alternatively, a third-party
have used incentives such as micropayments [21], altrusystem (e.g., run by an ISP) could use the distributed
ism [22] and mutual benefit [10]. Based on the successtore to perform the analysis (step (4) in Fig. 1). Thus
of Ono [10], we propose using a mutual benefit model,network customers can monitor the level of service they
which has been sufficient for a prototype implementationreceive and operators can be informed about events as
of C2M already installed over 34,000 times. they occur, expediting root-cause analysis and resolution
In the next section, we address many of these chal- )
lenges with a general approach to performing service3-1 Local Detection

Distributed Storage

ISP Operator
-
3

L

Figure 1. Schematic view of our edge detection approach.

level network monitoring from edge systems. The first step in C2M is to analyze local performance
3 C2MF K information to determine whether the monitored host is
ramewor experiencing a problem. In this section, we discuss the

Our C2M approach relies oedge system monitors types of available performance signals and techniques for
(ESMs) installed on end systems to detect service-levelletecting local performance events.



3.1.1 Performance Signals information gathered at the operating system level can

By pushing detection to end systems located at the edg%ssist in eva_luating_whether changes in performa}ncg are
of the network, C2M can use a wide variety of service-caused by interactions among concurrent applications

level information to diagnose local performance prob-(€-9- VoIP and P2P file sharing) instead of the network.
lems (Table 3). Examples of theperformance signals ~ AS We remove these confounding factors from our
available to any monitored application include flow and@nalysis, we improve our confidence that a detected
path-quality information such as throughput, loss anOproblem is independent of the n."nomt.ored_ service. Sim-
latencies. Our approach can also incorporate servicd!@y, concurrent events occurring imultiple perfor-
specific information to distinguish normal performance Mance signals for a service (e.g., download and upload
changes from potential network events. For instance,rates)’ further increases our confidence that the event is
P2P file-sharing systems can provide information about"dependent of the service.
whether a transfer has completed and a VoIP application Publishing local events. After detecting a local
can indicate whether there was a gap in voice playbackévent, C2M determines whether other hosts in the same
Our approach can also use system-level information foP€twork are seeing the same problem — this requires
local event detection. For example, the operating systerHOStS to share local event detection results. To ensure
can provide information about throughput consumedscalability, distributed storage (e.g., a DHT) is an appro-
by all running applications, allowing C2M to account Priate medium for sharing these events.
for the performance impact of concurrent applications.
Because these types of information can be gathere
passively, they can be sampled frequently so that eventsocally detected events may indicate a network problem,
are detected as soon as they occur. but each local view alone is insufficient to determine if
Finally, to assist with diagnosingetwork problems, this is the case. We now formulate a technique for using
our approach can incorporate limited active measuremultiple hosts’ perspectives to confidently identify when
ments such as traceroutes, pings and available bandwidghnetwork problem is the likely source.
probes.

3.2 Group Detection

3.2.1 Corroboration or Coincidence?

3.1.2 Local Event Detection To identify events impacting a particular network, C2M

C2M uses signals described in the previous section tdirst gathers a list of events reported by monitors in that
detect local performance events. The goal of local detechetwork. This can be done periodically or on demand
tion is to provide sufficient information for determining (e.g., in response to events detected by an ESM). If
the scope of the problem, i.e., whether the problem ignultiple events occur as the same time in the same
local or network-related. To this end, the output of local network, our approach must determine if these events are
detection is a summary for each event describing its typdikely to be due to the network.
(e.g., throughput drop, lost video frame), the time of There is a number of reasons why multiple hosts
detection, where in the network it was discovered andcan detect events concurrently in the same network.
how it was detected. For example, problems can be isolated to one or more
The choice of event detection technique is stronglyrelated physical networks due to a router malfunction
dependent on the service being monitored. For instancer congestion. The problem can also be isolated to
when monitoring end-to-end throughput for a host (e.g.the service driving network activity, e.g., performance
for video streaming), edge detection can identify dropsfrom a Web server or from a swarm of P2P users
in transfer rates potentially caused by a network issuesharing content. Finally, simultaneous events can occur
like congestion. In the domain of IPTV [18], video by chance, e.g., due to multiple users experiencing
quality (among other factors) may indicate problemsinterference on separate wireless routers.
with the network. Alternatively, a VoIP application may  In the following paragraphs, we discuss how C2M ac-
experience sudden jitter that impacts call quality. Ourcounts for service-specific dependencies and correlated
approach is agnostic to how these events are detected, s9ents that occur by coincidence. After accounting for
long as they correspond to service-level problems. service dependencies, our approach tests the null hypoth-
Correlating local events. Performance changes for esis that each host experiences evardependenthand
monitored services do not necessarily indicaééwork  not due to network problems. By comparing this value to
problems. In a P2P file-sharing application like Bit- the observed rate of local events occurring concurrently
Torrent, for example, download rates often drop to zerdfor hosts in a network, C2M can determine tiedative
abruptly. While this may appear at first to be a networklikelihood of the detected problem being caused by the
problem, it can be explained by the fact that download-network instead of by chance.
ing stops when the transfer is complete. Additionally, Eliminating confounding factors. The first step in
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To control for service-specific dependencies, any Sekigure 2: CDF indicating how increasing the number of hosts
of hosts whose performance is mutually dependent dureorroborating an event decreases the likelihood of it occurring

ing a time interval(i — 1,4] are treated as a single by chance.

logical host during that interval for the purpose of the
analysis. Thus, such hosts do not corroborate eacliy, the number of hosts detecting the event and the
number of performance signals indicating the event.

other’s events. For example, in the case of a P2P file

sharing application, performance problems seen by peeg/s now quantify the impact of these factors through a

that are downloading the same file and connected to eact),, iation of a region of interest (e.g., a BGP prefix)
Each of these hosts provides multiple

other arenottreated as independent events. with N hosts.
performance signals as described in Sec. 3.1.1. The

After this step, our approach must quantify the prob-
ability ‘?f n inde_per_1dent hOStS de_tef:ting an ey_ent at th‘?)robability of hosth witnessing an event in one signal,
same timeby coincidencei.e., the joint probability that Ln1, is chosen uniformly at random in the rangeos <

Ly, < 0.05. Similarly, the probability of witnessing a
local event concurrently in two signalgy,», is chosen

for a given timet,
uniformly at random from the range005 < Ly < Lp;

Zh Qpt =2 M.
In general, this is calculated as the union probability ofand the range for three signals; is 0.005 < Lp3 <
any one ofN participating hosts seeing an event: Lps. We then determine the probability ethosts { <
¢ < 5) seeing an event by coincidence for networks with
N N N N = 10, 25,50 hosts, and we compare this value with
P(Up=r In) =201 P(Ln) = 2255 p P(LR N Lj) + . the probability of anyonehost seeing an event. For each
setting, we run 100 randomly generated networks.

+(-1)"'P(LiN..NLy)
1) Fig. 2 uses a CDF to show the effect of varying the size

We are testing the hypothesis that the events aref the network on the probability of seeing correlated
events by coincidence. In general, the figure confirms

independent, so we can simplify the union probability:
N N N the intuition that relatively large numbers of monitored
PUnoy Ln) =320y P(Ln) = 255 PULn)P(Lj) + - hosts are unlikely to see network events at the same
+ (=1)""'P(Ly)...P(Lx) time simply by coincidence. More concretely, fr =
(2) 50, four hosts are an order of magnitude less likely to
see simultaneous events than two hosts. We observed

This equation gives the union probability famy
one host seeing an event, i.e., without corroboration.a similar effect when varying the number of signals

Generally, this is much larger than the probability thatdetecting local events — the more signals experiencing
at leastn hosts { < n < N) in the network will see performance events concurrently, the less likely that the
concurrent events. To calculate this, we peel off the firstevents are occurring by chance. Whn= 25, e.g., it

n — 1terms of Eq. 2. For example, the probability that atjs three orders of magnitude less likely that five peers
experience synchronized events in three performance

least two hosts will see concurrent events is:
signals than in one signal.
Relative likelihood. As we discussed at the beginning

PN, _L,uL)=%N .  P(L,)P(L; , : - . ;
(Ujsnes L /) ZD’;v‘l (Ln)P(Ly) of this section, we would like to determine the relative
= Xksjsn—1 P(Ln)P(L;)P(Lx)  ikelihood that concurrent local events are due to the

network and not happening by coincidence. To quantify

+ o4+ (=1)" ' P(L1)...P(Ln)
(3) this, we propose usinglékelihood ratig i.e., the ratio of

Effect of corroboration. Intuitively, our confidence the observed probability of concurrent events to the prob-
in a detected event being due to the network increaseability of concurrent events happening independently.



To derive this ratio, our approach first takes events Category | Number (Pctof tofal) |

seen byn peers in a network at timg and finds the Rumber of users e o
union probability P, that then (out of N) peers will IP addresses 3,100,000

: F A Prefixes 46,685
see a performancg problem at tlll’.fIEby comc@gnce. AUToNGMOUS SyStems (ASes 7000
Next, C2M determines the empirical probability’.{ TPs behind middleboxes ~ 82.6%
thatn peers see the same type of event (i.e, by counting Table 2: Summary of our P2P vantage points.

the number of time steps where peers see an event

concurrently and dividing by the total number of time large edge-system dataset comprising traces of BitTor-
steps in the observation intervd), The likelihood ratio  rent performance from millions of IP addresses. The
is computed aiR = P./P,, whereLR > 1 indicates following paragraphs describe this unique dataset, a
that detected events are occurring more often than bgollection of confirmed network problems we rely on
coincidence for a given network and detection settingsfor evaluation, and a particular case study we use in
We consider these to be events indicative of a networlour presentation. We close the section describing the

problem. Network Early Warning System (NEW®ur prototype
o edge-based event detection system that uses BitTorrent
3.2.2  Localization as a host application. NEWS is currently deployed as

After detecting a local event, our approach can use plugin for the Vuze BitTorrent client [25], to facilitate
information published in event reports to determine theadoption and to piggyback on the application’s large user
scope of the problem. If many hosts in a networkbase.
detect an event at the same time, it is likely a problem Building on P2P systems to provide network moni-
best addressed by the responsible network operatortoring is not without limitations. For one, each mon-
In such cases, our approach should be able to identifjtor contributes its view only while the P2P system is
the network affected by the event so as to provide theactive, which is subject to user behavior beyond our
necessary information for operators to determine the rootontrol. Second, the monitored end system may run
cause and fix the problem [9]. other applications that interfere with the P2P application
Our approach can localize problems using structuraRnd event detection.  Finally, some event detection
information about the organization of networks and theirtechniques require access to privileged system calls and
geolocations. For instance, it can use events detected bigformation not accessible to a P2P application. In
hosts in the same routable BGP prefix or ASN, and uséhe rest of this section, we show that despite these
geographic information to localize events to cities andchallenges NEWS can detect network events simply
countries. Further, C2M can use an AS-level Internetby passively monitoring BitTorrent, thus validating our
graph to localize network issues to upstream providerés©2M approach.
|(iJrr1 Ii;lsrouter-level graph to isolate problematic routers and4. 1 Datasets
4.1.1 BitTorrent traces

4 Implementing C2M The realization of NEWS is guided by measurement data
The previous section described our C2M approach fofrom the Ono plugin for Vuze. Ono implements a biased
detecting events from edge systems. Designing, depeer selection service aimed at reducing the amount of
ploying and evaluating C2M poses interesting challengegostly cross-ISP traffic generated by BitTorrent without
given the absence of a platform for experimentation asacrificing system performance [10]. Beyond assisting
the appropriate scale. in peer selection, the software allows subscribing vol-
A promising way to address this is by leveraging theunteers to participate in a monitoring service for the
network view of peers in large-scale P2P systems. P2nternet. With over 700,000 users today, distributed in
systems use decentralization to enable a range of scabver 200 countries, this system is the largest known end-
able, reliable services and are so prevalent that reportsystem monitoring service. The following paragraphs
indicate they generate up to 70% of Internet traffic [23].describe the data collected; summary information about
By avoiding the need to deploy additional infrastructureOno users is in Table 2.
and offering hosts that are already cooperating, these Data collected. While observing downloads, Ono
systems are an appealing vehicle for monitoring — onesamples transfer rates for each connection once every 5
that grows naturally with the network [6, 24]. seconds and cumulative transfer rates (over all connec-
Based on these advantages, we choose to desigions) once every 30 seconds. Besides transfer rates,
and evaluate a prototype implementation of C2M inthe system records protocol-specific information such
a large P2P system. To guide our design and evaluas whether each peer is “leeching” (both downloading
ate its effectiveness at scale, we take advantage of and uploading) or “seeding” (only uploading), the total



number of leechers and seeds, as well as information ¢
about the availability of data for each download. Theg
complete list of collected signals is in Table 3. 3
This data is reported to a data-collection infrastructure,§ 2
which converts data timestamps to a universal time zone? »:
This collection is for our design and evaluation; itrist °
part of NEWS event detectidn

Edge coverage. Any dataset is subject to limits in Figure 3: Upload rates for peers in a routable prefix owned by

the coverage of its m_easurement. hosts. Th_e datas% itish Telecom during a confirmed disruption (shaded region).
we use currently contains connection information from

users to more than 300,000,000 peer IPs; collectively, it$alse positive and negative rates.
users monitor more thati7 million paths per day. Ono
users covered 500 prefixes within its first two weeks of4-2 Case study

deployment, and grew to over 40,000 prefixes (coveringro assist with the presentation of NEWS, we pick one
nearly every country) in under two years. Collectively, of the events from the previous section. Specifically, we
these users have established connections to peers gemonstrate how NEWS detects the following problem
about 222,000 routable prefixes and 21,800 ASNs. in BT Yahoo: On April 27, 2009 at 3:54 PM GMT,
Besides monitoring many paths, our dataset covershe network status page reportedVé are aware of a
true edge systems located in portions of the Internet nohetwork problem which may be affecting access to the
accessible to existing distributed research and monitorinternet in certain areas’..The problem was marked as
ing platforms. For example, over 80% of the user IPsresolved at 8:50 PM.
correspond to middleboxes. Further, Chen et al. [26] Fig. 3 presents a scatter plot timeline of upload rates
show that these peers monitor more than 20,000 AS linksor peers located in the same routable prefix in BT Yahoo
not visible to public topology views, and their flows cross (81.128.0.0/12) during this event, which is depicted
40% more peering AS links than seen from pUblIC VieWS.as a shaded region_ Each point in the graph repre-
sents an upload-rate sample for a single peer; different
point shapes represent signals for different peers. The
Evaluating the effectiveness of a network event detectiofigure shows that multiple peers experience reduced
approach requires a set of events Statuldbe detected, performance between 10:54 and 16:54, while another
i.e., a set of ground-truth events. Among the differentset of peers see a significant drop in transfer rates at
strategies adopted by previous studies, manual labeling4:54. These are consistent with the reported event,
— where an expert identifies events in a network — is theyhen accounting for delays between the actual duration
most common [27]. of an event and the time assigned to it by a technician.
As one example, we use publicly available eventFurther, we see that there were two distinguishable
reports from the British Telecom (BT Yahoo) I5iRthe  network problems corresponding to the single generic
UK. This site identifies the start and end times, locationseport.
and the nature of network problems. During the month o ]
of April, 2009 there were 68 reported problems, which4-3 Network Monitoring from BitTorrent
include both Internet and POTS events. In this section, we discuss key design aspects of
In addition, we use network problems reported fromNEWS, a prototype edge-system monitor for BitTorrent.
a large North American ISP. For nondisclosure reasonsThroughout this discussion we use the confirmed BT
we cannot report absolute numbers for these events.  Yahoo event in Fig. 3 to explain our design choices.
Despite its many advantages, the set of labeled probwith respect to the design challenges listed in Sec. 2,
lems for a network is restricted to events that can beve address scalability and granularity through our local
detected by the in-network monitoring infrastructure orevent detection and group corroboration approach;
generated by user complaints. Further, human expertshe remaining issues of privacy, trust and adoption
can introduce errors and disagreement, e.g., in reportingre covered in the subsequent sections. We provide
the time and duration of an event. As a result, we carlow-level implementation details in Sec. 6.
determine whether confirmed events are detected by our ,
approach, but we cannot draw strong conclusions about-3-1  Local Event Detection
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4.1.2 Confirmed network problems

Any C2M system must define what constitutes a service-
2Users are informed of the diagnostic information gathered by thelevel event that could be due to a network problem
plugin and are given the chance to opt out. In any case, no péissona defi h b dpd L
identifiable information is ever published. In NEWS, we define these t.O € UnexDECt? arops in
3hitp://help.btinternet.com/yahoo/help/servicestatus/ end-to-end throughput for BitTorrent. Monitoring for



23 how the moving average detects events. Tuning the

w© window size {v) is analogous to changing how much of

o f the past the system remembers when detecting events.

jg“ Assuming that the variance in the signal is constant

o during an observation window, increasing the number of
samples improves our estimate @fand thus detection
accuracy. In general, however, varies over time, so

increasing the window size reduces responsiveness to

changes iw.

The detection threshold ( o) determines how far a

184 v 2% value can deviate from the moving average before being

. ) . G considered an edge in the signal. While usingaturally
Figure 4: Moving averages facilitate identification of separate,[ieS the threshold to the variance in the signal, it is

network events affecting transfer rates for two groups of peersd_ Hicul o | itabl lue for To hel
during the same period shown in Fig. 3. ifficult a priori to select a suitable value for To help

understand how to set this threshold, Fig. 5 shows how
3 peers B deviations behave over time for peers experiencing the
network problems illustrated in Fig. 4, using a window

5
) ‘ size of 10. Specifically, each curve shows the maximum
) drop in performance (most negative deviation) seen by
» at leastn peers in the network at each time interval.
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Because these deviations vary considerably among peers,
, A Yy A y we normalize them using the standard deviation for the
Qs 1054 1254 s 1654 1854 2= window (o). If our approach to local detection is viable,
there should be some threshold- (o) for identifying
Figure 5: Timeline of the maximum performance drops for atpeers’ local events that correspond to network ones.
'eas.m.peers (moving average W'r.]dow size of #0= 1,3, 7). The top curve, where = 1, shows that the maximum
Deviations for any one peer are highly variable; those for seven, . . . .
peers rarely capture any performance drops. The peaks i eV|e_1t|0ns _from any one peer produces a noisy signal
deviations for three peers correspond to confirmed events. that IS SngeCt to a wide range of values, and features
of this signal do not necessarily correspond to known
this type of event corresponds to detecting edges imetwork problems. The bottom curve, where= 7,
the throughput signal; specifically, we detect downwardshows that it is rarely the case that seven peers all see
edges in the time series formed by BitTorrent throughputperformance drops simultaneously, so features in this
samples. signal are not useful for detecting events during this
Event detection in BitTorrent. NEWS employs period. Last, the middle curve, where= 3, produces
the simple, but effective, moving average technique fora signal with a small number of peaks, where those
detecting edges in BitTorrent throughput signals. Givenabove2.50 correspond to real network problems. This
a set of observatiorig = {v1, vy, ..., v, }, Wherey; isthe  suggests that there are moving-average settings that can
sample at timé, the technique determines the meay,  detect confirmed problems in this network. In Sec. 4.3.2,
and the standard deviatiom; of signal values during the we show how NEWS can extract network events from a
window [i — w,i]. The moving average parameters arevariety of settings, using the analysis from Sec. 3.2.
the observation window size for the signal)(and the Confounding factors. Downward edges in the
threshold deviation from the mean- (o) for identifying  throughput signal provided by a host BitTorrent
an edge. Given a new observation valye; at time  application are not necessarily due to network events
i+ 1,if v, — | > t- o;, then an edge is detected.  (Sec. 3.2). Thus, when monitoring BitTorrent it
To demonstrate visually how moving averages facili-is essential to use service-specific information to
tate edge detection, Fig. 4 plots the 10-minute averagedistinguish expected behavior from network events.
of upload rates for two groups of peers from Fig. 3. Table 3 lists the information available when monitor-
Using these averages, it becomes clear that there is iag BitTorrent. NEWS uses several of these signals to
correlated drop in performance among a group of threeliminate well known confounding factors. For instance,
peers at 14:54 (top graph), while the bottom graph showSsNEWS tracks the transfer states of torrents and accounts
a series of performance drops, the first near 10:54 and thier the impact of download completion. To eliminate
last around 13:00. Both groups of peers recover aroungerformance problems due to the application (as opposed
17:30. to the network), such as missing torrent data or high-
The window size and deviation threshold determinebandwidth peers leaving a swarm, all peers connected

-1




Signals General to P2P Systems 1 signal e 2 signals 3 signals

Overall upload rate Overall download rate Deviation=1.50, Window=10
Per-connection upload rat¢ Per-connection download rate g 2
Connected hosts RTT latencies T s
Signals Specific to BitTorrent é 1
Availability Connected seeders/leechers % 0s

Number available leecher§ Number available seeds
Number active downloads| Number active uploads

25 Deviation=2.20, Window=20

Table 3: Signals available when monitoring from BitTorrent.
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1
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ikelihood Ratio

to the same torrent are treated as the same logical peet.

As another example, NEWS accounts for correlations — awzr s P 1o wse
between the number of peers connected to a user and tigure 6: Timeline showing the likelihood ratio for different
average transfer rate for each peer. moving average settings. In each case, there are few events

NEWS also requires multiple performance signals towith LR > 1, and nearly all correspond to confirmed events.
see concurrent events before publishing an event. As we . . ]
discussed in Sec. 3.2, improving our confidence that th&1°re signals seeing a problem, the more confidence we

event is independent of the application also improves oufa attribute to the problem not being the application.
confidence that it is caused by the network. In Fig. 6 (top), we use a detection thresholdldfo

When detecting an event, NEWS must not only de-and vyindow size of 10. Using such a low thre_shold not
termine that there is a problem with network, but surprisingly Igads to many cases where multiple peers
specifically identifythe host's networlas the problem. If ~ S€€ synchronized problems (nonzero LR values), but they
a host's connections were biased toward a remote AS, fgR"® not considered network problems becalige< 1.
example, then it would be unclear if detected problemdmportantly, there are few values abdve = 1, and the
were specific to the host's AS or the biased one. Td@rgest corresponds to a performance drop potentially

explore this issue, we determine the number of routabl&U€ to congestion control, since it occurs when peers
prefixes visited by each peer's connections during a 19have simultaneously saturated their allocated bandwidth

day period. We find that the vast majority of peers after the confirmed network problem is fixed.
(90%) connect to peers in five or more prefixes during Fig- 6 (bottom) uses a detection threshol@d and

the period; the median is 169. This range indicates thatvindow size of 20. As expected, the larger threshold
it extremely unlikely that problems in remote networks and window size detect fewer events in the observation

would be falsely interpreted as problems in the hostsWindow. In this case.all of the three values that

network. appear abové.R = 1 correspond to the known network
_ problems and they are all more than twice as likely to be
4.3.2  Group Corroboration due to the network than coincidence.

As discussed in Sec. 3.2, after detecting local events, These examples demonstrate that our approach is
C2M determines the likelihood that the events are due t@ble to reliably detect different problems with different
a network problem. Thus, once a local event has beeparameter settings. They also suggest that the approach
detected, NEWS publishes local event summaries t@enerally should useultiple settings to capture events
distributed storage so that participating hosts can accedbat occur with different severity and over different time
detected events in real time. scales. As such, the likelihood ratio can be seen as
We now apply this likelihood analysis to the events a single parameter that selects detection settings that
in BT Yahoo as described in Sec. 4.2. Recall that wereliably detect network problems.
would like to detect synchronized drops in performance .
that are unlikely to have occurred by char?ce. To that4'3'3 Privacy and Trust
end, we determine the likelihood ratibR = P./Py, Any implementation of a hetwork monitoring service is
as described in Sec. 3.2.1. For this analysis, we use orgubject to important considerations such as privacy and
month of data to determin&, andP,,. trust. To ensure user privacy, NEWS does not publish
Figure 6 depicts values farR over time for BT Yahoo any information that can be used to personally identify
using different local event detection settings. In boththe user. Rather, it reports only detected events and as-
figures, a horizontal line indicatdsR = 1, which is  signs per-session, randomly generated IDs to distinguish
the minimum threshold for determining that events areevents from different users.
occurring more often than by chance. Each figure shows While this approach to ensuring privacy is appealing
the LR values for up to three local signals (e.g., uploadfor its simplicity, it opens the system to attack by
and download rates) that see concurrent performancmalicious parties. For example, one ISP may wish to
problems for each peer. As previously mentioned, the'poison” the system by introducing false event reports
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Figure 7: Timelines depicting events (centered in the figures) affectingerarages for peers in a North American ISP.

for a competitor’s ISP. There are several ways to hardenl Affected customers | Pct of total events [ Detected [ Possible |
an implementation against such attacks. First, we include %(%Olofog S 1000 igﬂﬁ %?;f 2322
each host'd.;, in the event reports, and recall that larger [_C <1000 7% 0 0
L;, leads to a smaller contribution to the likelihood
(Eqg. (3)). This mitigates the effect of an attacker gener-
atin'g a large volume of false event repor'ts' usi.ng NEWSS.1 Effectiveness

While an attacker could forgg;,, any participating host

could detect that it is inconsistent with the number of To evaluate the accuracy of our approach we compare its
reports placed in the distributed store. In addition, sempl results against labeled network problems from two ISPs,
rate-limiting can be applied to a centralized attackerour ground truth. For the purpose of comparing these
and a Sybil-like attack can be mitigated with securedatasets, if an event was detected within 2 hours of a

Table 4: Comparison with events from a North American ISP.

distributed storage [28]. reported time, we count it as being the same event.
_ _ For BT Yahoo, of the 181 events detected by our
4.3.4 Adoption Incentives approach, 54 are confirmed network problems — covering

In general, our approach does not require incentive§Iearly B0% of the Iabeled_ _events. Our edge-based
for adoption, e.g., if applications are deployed with approach detected. an additional 127 event_s; aIthqugh
instrumentation by default. For our prototype systemthese are not confirmed problems, we caution against

in BitTorrent, however, the deployment model relies Oninferring false positive rates, as the reported events
users installing third-party software are based on those detectable from existing monitoring

. gystems. Still, even in the unlikely case that these
Based on the success of Ono [10], we propose using’, ...
_ : . : ; dditional events are not real, the average false alarm rate
a similarmutual benefiincentive model in which users . .
. . ) . . (just over 4 events per day) is manageable.
contribute their network view (at essentially no cost) in F North Ameri ISP h detected
exchange for early warnings about network problems or a Nor merican » our approach detecte

that impact performance. As these problems may ind variety of performance events, some of which were

dicate changes in ISP policies, violations of SLAs Or_conﬂrrped outagEs.t Fotr casest where there was ta (z)rlop
ISP interference, such warnings provideamechanismfopﬁI periormance but not an outage, we Wwere not aple

users to ensure that the Internet service they pay for LL,O obtlalnf?rr]ound truth :cnformtatlé)nt. Itzl?jut:e 7 shows a h:
properly provided. This has been sufficient incentive forSample ofinree cases or events detected by our approach:

NEWS, which has already installed over 34,000 times. (a) an confirmed outage, (b) a non-outage performance
' ' event (unconfirmed) and (c) an unconfirmed outage.

Table 4 presents summary results for this ISP. Our
approach was able to detect half of the largest outages
We use one month of data gathered from BitTorrent(column 3). In column 4, we show the number of
users to answer key questions about large-scale edgéutages that appeared to affect monitored hosts, but not
system network event detection. We first demonstratén sufficient numbers to validate the event. In addition
the effectiveness of our approach using confirmed eventt9 these events, our approach detected 41 events during
from two large ISPs. We show that using a popular p2phe 1-month period. Unfortunately, the ISP did not have
service as a host application can offer sufficient coveragéufficient information to confirm or deny them.

for edge-system event detection and present a summa
of results from our detection algorithm on networks
worldwide. We close the section with an evaluation of Edge-system event detection requires a sufficient number
the robustness of our approach to parameter settings arad peers to concurrently use a network for the purpose
an analysis of the overhead for participating hosts. of corroboration. To evaluate whether using a popular

5 Evaluation

%’.2 Coverage
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Relationship [ Min. ASNs [ #cases| # countries |

() (b)

(TSP [ Users[ Eventg[ ISP [ Users[ Events gus:omer-Erov?ger g 3;0 g
Deutsche Tel. | 6760 | 69 Cableuropa 1999 | 245 SoorPoar - 157 =
HTP 3652 | 112 BTnet UK 1277 | 182
HanseNet 3216 | 17 Proxad/Free 1769 | 176 .
Neuf Cegetel | 2821 | 108 TP 3650 | 112 Table 6: Number of cross-network events (and countries
Arcor 2245 | 29 Neuf Cegetel | 2821 | 108 affected) as inferred from single-network events. The first
Cableuropa 1999 | 245 || Deutsche Tel. | 6760 | 69 column indicates the AS relationship and the second column
Proxad/Free 1769 | 176 Telewest 237 50 - e
Erance Tel. 1688 | 31 Pakistan Ter. 759 46 specifies the minimum number of affected ASes.
Tel. Italia 1651 | 20 Comunitel 197 45 - -
Telefonica 1337] 27 Mahanagar Tel.| 454 | 42 [Time (GMT) | Provider(s) | Affected ASes ] Country |
Apr 16, 13:35 8218 15557,12876,12327  FR
Apr 17, 12:40 1267 16338,3352,6739 ES
Table 5: Top 10 ISPs by users (a) and by events (b). Apr30,01:15 | 10396,7910| 12357,16338,1271§ ES

Table 7: Example cross-network events corresponding to the
P2P application as a host application can offer sufficiensecond row of Table 6.
coverage for edge-system event detection, we calculated ) ) o
the maximum number of peers simultaneously onling!SPS; 9., due to provider or peering link issues. As
for each network in our dataset. Figure 8 plots a cppWe discussed in Sec. 3.2.2, one can use AS relationships

of these values for each routable prefix and ASN. ornd geolocation information to isolate the scope of cross-

average, the number of simultaneous online peers pdi€Work events. _ _
routable prefix is 3 and per ASN is 7. Even though We focus on cross-network events due to issues with

our installed base of users represents less than 0.4% gPstream providers or peers. To this end, we find
all BitTorrent clients, we find that this offers sufficient €vents that occur in multiple ASNs at the same time,
coverage (three or more peers concurrently online) fothen determine which of these ASNs have a peering

more than half of the ASNs that we study. relationship or identical providers (based on the AS
. topology generated by Chen et al. [26]). Events that
5.3 Worldwide events occur within 30 minutes of each other are considered the

Having shown the effectiveness of NEWS, this sectionsame, and we conservatively consider AS relationships
characterizes network events that it detects worldwide0nly for those ASNs located in the same country.
using a thresholdLR = 2 (as guided by Fig. 6). Table 6 summarizes our results. The first row indicates
For a one-month period, NEWS detected events in 38hat when searching for at least two ASNs with the same
countries across five continents, emphasizing how edgé)l’OVidel‘, there are 370 cases in five countries. In the
based detection can achieve broad network coveraggecond row, we use a more restrictive search where we
worldwide. In Table 4(a), we list the top 10 ISPs in termsrequire that at least three ASNs having the same provider
of the number of users participating in our study (secondsee synchronized network events — such events are much
column), and the number of events detected in each ofarer; a sample of them is provided in Table 7. Finally,
these ISPs (third column). the last row indicates that there is a significant num-

Because different networks provide different quality ber of peering ASNs that see synchronized problems.
of service [29], increasing the number of peers shouldPiscovering such potential problems is unique to our
not necessarily increase the number of events detecte@Pproach — these links are often invisible to existing
As the table shows, there is indeed little correlationInternet monitoring techniques that do not rely on edge-
between the number of vantage points in a network angystem monitors [26].
gheetezrsr.nber of performance events that our approaclg_5 Robustness

Table 4(b) shows the top 10 ISPs in terms of theAs discussed in Sec. 4.3.2, the likelihood ratioR)
number of events detected, covering ISPs of varying siz€an be seen as a parameter for distillmgworkevents
in Europe and Asia. We note that with the exception offrom locally detected ones. As such, the number of
the top three ISPs, our approach generates fewer tharetwork events detected using & threshold should
four detected events per day. Thus, a deployment of oufot significantly change with different local detection
approach should report events at a reasonable rate — o8€ttings.
that will not overwhelm (or annoy) network operators  Fig. 9 plots CDFs of.. R values for BT Yahoo during
and users. one month. In Fig. 9(a), we pldiR values foriV = 10
ando = 1.5 and Fig. 9(b) plots the same fov = 20
ando = 2.2. Settings for small deviations and window
An advantage to our C2M approach is that it is uniquelysizes yield a larger number of ratio values greater than
positioned to detect network problems affecting multipleone (2.15% of the time) whereas larger deviations and

5.4 Cross-network events
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CDF [n<x]
CDF [X<1]

o1 Routable Prefix

0 ASN Likelihood Ratio Likelihood Ratio

1 10 100 1000 . .
Number of Simultaneous Online Peers (a) Dev.=1.5, Win.=10 (b) Dev.=2.2, Win.=20
Figure 8: CDF of concurrent online peers inFigure 9: Likelihood ratios are robust to various parameter settings; tegd
this study. network problems at most 2.15% of the time for small deviations and windo

sizes (a) and at most 0.75% of the time for larger ones (b).

window sizes yields a smaller number of them (0.75%).LOC. Released under an open-source (GPL) license,
Generally, such cases (where concurrent events occuur plugin has been installed over 34,000 times since
more often than chance) are extremely rare for signifits release in March, 2008. In the rest of this section,
icantly different detection parameters, suggesting thatve discuss details of our NEWS implementation in its
LRs are indeed robust to detection settings. current deployment. In addition to providing specific
algorithms and settings that we use for event detection,
our discussion includes several lessons learned through
NEWS passively monitors performance and uses |0Wdep|oyment experience.
cost event-detection techniques, so there is negligible | gcal detection. NEWS detects local events using
overhead for detecting local events. The primarythe moving average technique discussed in Sec. 4.3.1,
sources of overhead are calculating the union probabilityyhich uses the window sizev) and standard-deviation
(CPU/memory) and sharing locally detected eventsyyitiplier (£) parameters to identify edges in BitTorrent
(network). We now demonstrate that these overheads afgansfer rate signals. In practice, we found that BitTor-
reasonably low. rent often saturates a user’s access link, leading to stable
For determining the union probability, the formula transfer rates and smad. As a result, edges in the
in Eq. (3) specifies,C,,/» (n choosen/2) operations,  performance signal occur even when there are negligible
wheren is the number of hosts in the network having re|ative performance changes. We address this issue in
a nonzero probability of detecting an evéntWe use  NEWS by including a secondary detection threshold that
Miller's algorithm [30], an optimal trade-off between requires a signal value to change by at least 10% before
memory, O(n), and computation,O(n?). While a detecting an event.
substantial improvement over aimaimplementation, its Throughput signals also undergo phase changes, dur-
processing overhead can still be significant for lange jng which a moving average detects consecutive events.
(in our experiencep > 50). To bound this overhead, NEWS treats these as one event; if enough consecutive
we limit the number of hosts used in the computationeyents occur, we assume that the signal has undergone a
to the H hosts with the largesL,,. In this way, we  phase change, and reset the moving average using only
conservatively estimate an upper bound oy for the signal values after the phase change.
full set of . hosts. After detecting a local event, NEWS generates a report
The other source of overhead is using diStribUtedcontaining the user's per-session D, ¢, a bitmap
storage to share locally detected events. While thigpgicating the performance signals generating events, the
overhead is variable and dependent on factors including,rrent event detection raté ), the time period for the
the target network and detection settings, we found itypserved detection rate, the current time (in UTC) and
to be reasonably low for many settings. For examplehe version number for the report layout. The current
our analysis shows that read and write operations argeport format consumes 38 bytes.
performed by each host with average frequencies on the T plugin disseminates these reports using the
order of several minutes, and in the worst case once evely ;demlia-based DHT [31] built into Vuze. This DHT
30 seconds. is a key-value store that stores multiple values for
6 Deployment Details gach key. To facilitate group corroborgtion of locally
etected events, we use network locations as keys and
The NEWS plugln for Vuze is written in Java and the Corresponding event reports as values.
the core classes for event detection comprsk000 In our deployment we found variable delays between
“When L, = 0 for a host, it does not contribute to the union €VeNt detection and reporting, in addition to significant
probability. Thusn is the number of hosts seeing at least one event.  clock skew. To address these issues, NEWS uses NTP

5.6 Overhead for Participating Hosts
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servers to synchronize clocks once per hour, reportsre publicly available.
event times using UTC timestamps and considers any
events that occurred within a five-minute window when 7/ Related Work

determining the likelihood of a network event occurring. As an approach to detecting service-level network events
Group corroboration. After NEWS detects a local from end systems located at the edge of the network,
event, it performs corroboration by searching the DHTC2M is related to a variety of prior work. Most previous
for other event reports in each of its regions — currentlyefforts on network event detection have focused on core
the host's BGP prefix and ASNBefore using a report networks and GREN environments [2,11,32,33].
from the DHT for corroboration, NEWS ensures that: (1) Several researchers have proposed using end-host
the report was not generated by this host; (2) the reporprobing to identify routing disruptions and their effect
was generated recently; and (3) the standard-deviatiogn end-to-end services [3, 7, 16, 17]. A number of
multiplier for detecting the event was not less than therecent efforts are exploring new monitoring techniques
one used locally. using distributed research platforms (e.g., PlanetLab
If these conditions are met, the report’'s ID is addedor N||\/||2) as vantage points_ These approaches are
to the set of recently reported events. If a peer findsnherently limited by the relatively small number
events from three or more other peers at the same time (& nodes available for experimentation and the fact
configurable threshold), it then uses Eq. 3 to determinghat they are not representative of the larger Internet.
the likelihood of these events happening by coincidencewnhile most of these hosts are deployed in GREN
Using the information gathered from events published tGenvironments, often close to the core, much of the
the DHT over time, the peer can calculate the likelihood|nternet’s growth occurs beyond their reach, such as
ratio described in Sec. 4.3.2. If the likelihood ratio is behind NAT boxes and firewalls or in regions of the
greater than 2 (also configurable), the monitor issues #nternet not exposed by public BGP feeds [26, 34, 35].
notification about the event. C2M uses a fundamentally different approach that
NEWS peers read from the DHT only after detecting pushes detection to the edge-systems where services are
a local event, in order to corroborate their finding. To ysed.
account for delays between starting a DHT write and the  NEWS passively monitors BitTorrent to identify
corresponding value being available for reading, NEWSservice-level network events.  Previous work has
sets atimer and periodically rechecks the DHT for eventsuggested that the volume and breadth of P2P systems’
during a configurable period of interest (currently onenatural trafficcould be sufficient to reveal information
hour). about the used network pathgithout requiring any
Third-party interface.  Following our incentive  additional measurement overhead [6, 24]. PlanetSeer [6]
model, NEWS keeps end-users informed about detectegses passive monitoring of a CDN deployed on
service-level events (Sec. 4.3.4.) Beyond end-usersplanetLab, but relies on active probes to characterize
network operators should be notified to assist inthe scope of the detected events. Casado et al. [35]
identifying and fixing these problems. With this in mind, and Isdal et al. [36] use opportunistic measurement
we have implemented a DHT crawldMEWS Collectdr  to reach these edges of the network, by leveraging
that any third party can run to collect and analyzespurious traffic or free-riding in BitTorrent. Unlike
local event reports. To demonstrate its effectivenessthese efforts, NEWS takes advantage of the steady
we built NEWSight— a system that accesses live stream of natural, (generally) benign traffic generated by
event information gathered from NEWS Collector and jtTorrent and does not require any active measurement.
publishes its detected events through a public Welwhile NEWS shares many goals with DIMES [22] and
interface. NEWSight also allows network operators toNeti@home [37], it uses immediate incentives to ensure
search for events and register for notifications of eventssignificantly wider adoption than what is possible with a
detected in their networks. Operators responsible fopurely altruistic model.
affected networks can confirm/explain detected events.
Whereas NEWS crowdsources event detection8 Conclusion
NEWSight can be viewed as an attempt at crowdsourcingrne yser experience for networked applications is be-
network event labeling. Confirmed events can help ©0;qming an important benchmark for customers and net-
improve the effectiveness of our approach and othef,q providers. To assist operators with resolving such
S|m!lar ones — addres;mg the paucity of labeled datdgges in a timely manner, we argued that the most
available in this domain [27]. We are currently beta- 5oropriate place for monitoring service-level events is
testing this interface with ISPs; the interface and its data(it the end systems where the services are used. We pro-
5\uze already collects the host's prefix and ASN; we are currently P0S€d @ new approach, call@2M for Crowdsourcing
adding support for whois information. Cloud Monitoring, based on pushing end-to-end perfor-
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mance monitoring and event detection to the end systenma7] N. Feamster, D. Andersen, H. Balakrishnan, and M. F. Kagsho

themselves.
C2M systems and demonstrated its effectiveness usi
a large dataset of diagnostic information gathered fro

We presented a general framework for

peers in the BitTorrent system, along with confirmed
network events from two different ISPs. We demonstratgig)
that our crowdsourcing approach allows us to detect
network events worldwide, including events spanning[20]
multiple networks. Finally, we designed, implemented

and deployed a BitTorrent extension that performs real-[21]

time event detection using our approach — currently
installed more than 34,000 times.

o

[22]
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