Network Positioning from the Edge

David R. Choffnes, Mario A. Sánchez, Fabián E. Bustamante

EECS, Northwestern U.

http://aqualab.cs.northwestern.edu

Network Positioning Systems (NPS)

- •How to pick among alternative hosts?
- A common problem in distributed systems
 - -Locate closest game server
 - -Ensure inter-node latency bounds for a cluster
- Scalable way of determining relative location of hosts
- Different Approaches
 - -Landmark-based network coordinates (e.g. GNP)
 - -Landmark-free network coordinates (e.g. Vivaldi)
 - -Direct measurement (e.g. Meridian)
 - -Measurement reuse (CRP)

Large-scale P2P – A good client

- Benefits for large-scale P2P systems
 - -High performance
 - -Reduced cross-ISP traffic
 - -Improved robustness to failures
- •How do they fare when deployed?
 - -At the scale of large P2P systems?
 - -At the edge of the network?
- An open question
 - -NPS evaluated in simulation and research testbeds
 - -Lack of representative traces of P2P environments
 - -No platform suited for experimentation at appropriate level

The world looks different from the edge...

Median latency between P2P nodes –2x what reported by Ledlie et al.

Going to the edge

- To know if NPS work for P2P you need to go to the edge
- Compare representative network positioning systems –GNP, Vivaldi, Meridian and CRP
- Use dataset gathered from BitTorrent users
 - -Directly sample Vivaldi and CRP positions
 - -Collect latency and traceroute between connected peers
 - 15 days, ~20k peers, ~8k routable prefixes 2 billion latency samples
- Latency Matrix
 - -Matrix of source and destination routable BGP prefixes
 - -Use minimum observed RTT for each matrix element
 - Obtain a 95%-full matrix: 479x479 matrix

Measuring the accuracy of net pos systems

* **GNP:** 3 runs, 15 landmarks , 464 targets, 8-dimensional coordinate space

** Meridian: 379 random Meridian nodes, 100 target nodes, 16 nodes per ring and 9 rings per node

Average RALP (Rel. App-Latency Penalty)

- RALP: (selected optimal)/optimal
 - * Much greater than 0.4 RALP reported by Ledlie et al.

Sources of error

- High Variance
- First- and Last- Mile Issues
- Triangle Inequality Violations

First- and last-mile issues

Triangle Inequality Violation Severity

Conclusions

- NPS performance at the edge is important but generally unknown
 - -Requires evaluating them where they are used
- Most NPS deployed to edge perform much worse than predicted
 - -Not particularly new problem: Last-mile issues, TIVs, etc.
 - Severity of issues much worse

Time to make the subject hot again?

Questions?

