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1. Introduction
Multicast is an efficient mechanism to support group

communication. It decouples the size of the receiver set
from the amount of state kept at any single node and po-
tentially avoids redundant communication in the network,
promising to make possible large scale multi-party applica-
tions such as audio and video conference, research collabo-
ration and content distribution.

A number of research projects have recently proposed an
end-system approach to multicast [11, 3, 24, 10, 21, 18, 28],
partially in response to the deployment issues of IP Multi-
cast [12, 13]. In this middleware [1] or application-layer
approach, peers are organized as an overlay topology for
data delivery, with each connection in the overlay mapped
to a unicast path between two peers in the underlying In-
ternet. All multicast related functionality is implemented at
the peers instead of at routers, and the goal of the multicast
protocol is to construct and maintain an efficient overlay for
data transmission.

One of the most important challenges of peer-to-peer
multicast protocols is the ability to efficiently deal with the
high degree of transiency inherent to their environment [5].
As multicast functionality is pushed to autonomous, un-
predictable peers, significant performance losses can re-
sult from group membership changes and the higher failure
rates of end-hosts when compared to routers. Measurement
studies of widely used peer-to-peer (P2P) systems have re-
portedmedian session times1 ranging from an hour to a
minute [8, 15, 22].Achieving high delivery ratios without
sacrificing end-to-end latencies or incurring additional
costs has proven to be a challenging task.

This paper introduces Nemo, a novel peer-to-peer multi-
cast protocol that aims at achieving this elusive goal. Based
on two techniques: (1)co-leadersand, (2)triggered nega-
tive acknowledgments (NACKs), Nemo’s design emphasizes
conceptual simplicity and minimum dependencies [2], thus
achieving, in a cost-effective manner, performance charac-
teristics resilient to the natural instability of its target en-

1Session timeis defined as the time between when a peer joins and
leaves the network.

vironment. Simulation-based and wide-area experimenta-
tions show that Nemo can achieve high delivery ratios (up
to 99.98%) and low end-to-end latency similar to those of
comparable protocols, while significantly reducing the cost
in terms of duplicate packets (reductions> 85%) and con-
trol related traffic, making the proposed algorithm a more
scalable solution to the problem.

The remainder of this paper describes our approach in
more details (Section 2), and present early experimental re-
sults in Section 3. We briefly discuss related work in Sec-
tion 4 and conclude in Section 5.

2. Nemo’s Approach
Nemo follows theimplicit approach[3, 10, 21, 28] to

building an overlay for multicasting: participating peers
are organized in a control topology and the data delivery
network is implicitly defined based on a set of forwarding
rules. We here provide a summarized description of Nemo.
For complete details, we direct the reader to the associated
technical report [6].

The set of communicating peers are organized into clus-
ters based on network proximity,2 where every peer is a
member of a cluster at the lowest layer. Clusters vary in
size betweend and3d− 1, whered is a constant known as
thedegree. Each of these clusters selects aleader3 that be-
comes a member of the immediate superior layer. In part to
avoid the dependency on a single node, every cluster leader
recruits a number of co-leaders to form its crew. The pro-
cess is repeated, with all peers in a layer being grouped into
clusters, crew members selected, and leaders promoted to
participate in the next higher layer. Hence peers can lead
more than one cluster in successive layers of this logical
hierarchy.4

Co-leaders improve the resilience of the multicast group
by avoiding dependencies on single nodes and providing al-

2Other factors such as bandwidth [25, 11] and expected peer life-
time [8] could be easily incorporated.

3The leader is the peer in the center of the cluster, in terms of end-to-
end latency.

4This is common to both Nemo and Nice [3] as well as Zigzag [24]; the
degree bounds have been chosen to help reduce oscillation in clusters.
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Figure 1: Nemo’s logical organization. The shape illustrates only the role
of a peer within a cluster: a leader of a cluster at a given layer can act as
leader, co-leader, or an ordinary member at the next higher layer.

ternative paths for data forwarding. In addition, crew mem-
bers share the load from message forwarding, thus improv-
ing scalability. Figure 1 illustrates the logical organization
of Nemo.

A new peer joins the multicast group by querying a well-
known special end-system, the rendezvous point, for the
IDs of the members on the top layer. Starting there and
in an iterative manner, the incoming peer continues: (i) re-
questing the list of members at the current layer from the
cluster’s leader, (ii) selecting from among them who to con-
tact next based on the result from a given cost function, and
(iii) moving into the next layer. When the new peer finds
the leader with minimal cost at the bottom layer, it joins the
associated cluster.

Nemo’s data delivery topology is implicitly defined by
the set of packet-forwarding rules adopted. A peer sends
a message to one of the leaders for its layer. Leaders (the
leader and its co-leaders) forward any received message to
all other peers in their clusters and up to the next higher
layer. A node in charge of forwarding a packet to a given
cluster can choose any of the crew members in the cluster’s
leader group as destination.

Figure 2 illustrates the data forwarding algorithm using
the logical topology from Figure 1. Each row corresponds
to one time step. At timet0 a publisher forwards the packet
to its cluster leader, which in turn, sends it to all cluster
members and the leader of the next higher layer (t1). At
time t2, this leader forwards the packet to all its cluster
members, i.e. the members of its lowest layer and the mem-
bers of the second lowest layer. In the last step, the leader
of the cluster on the left forwards the packet to its members.
While we have employed leaders for this example, Nemo
uses co-leaders in similar manner for forwarding.

To illustrate Nemo’s resilience to peer failures, Figure 3
shows an example of the forwarding algorithm in action.
The forwarding responsibility is evenly shared among the
leaders by alternating the message recipient among them.
In case of a failed crew member, the remaining leaders can
still forward their share of messages through the tree. Like
other protocols aiming at high resilience [20, 4], Nemo re-
lies on sequence numbers and triggered NACKs to detect
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Figure 2: Basic data forwarding in Nemo. One time step per row.

lost packets.
Every peer piggybacks a bit-mask with each data packet

indicating the previously received packets. In addition, each
peer maintains a cache of received packets and a list of miss-
ing ones. Once a gap (relative to a peer’s upstream neigh-
bors) is detected in the packet flow, the absent packets are
considered missing after a given time period.

3. Evaluation
We analyze the performance of Nemo using detailed

simulation and wide-area experimentation. We compare
Nemo’s performance to that of three other protocols –
Narada [11], Nice [3] and Nice-PRM [4] – both in terms
of application performance and protocol overhead. Appli-
cation performance is captured by delivery ratio and end-to-
end latency, while overhead is evaluated in terms of number
of duplicate packets.

For each of the three alternative protocols, the values
for the available parameters were obtained from the corre-
sponding literature [11, 3, 4].

We used two different failure rates. The high failure rate
employed a mean time to failure (MTTF) of 5 minutes, and
a mean time to repair (MTTR) of 2 minutes. The low failure
rate used a MTTF of 60 minutes and a MTTR of 10 minutes.
For details on the protocols implementation and on the ex-
perimental setup, we direct the reader to the associated tech-
nical report [6].

All experiments were run with a payload of 100 bytes.
We opted for this relatively small packet size to avoid sat-
uration effects in PlanetLab. For simulations, we assume
infinite bandwidth per link and only model link delay, thus
packet size is secondary. We employ a buffer size of 32
packets and a rate of 10 packets per second. This corre-
sponds to a 3.2-second buffer, which is a realistic scenario
for applications such as multimedia streaming.

3.1. Simulation Results

For all simulation results, each data point is the mean of
25 independent runs.



(a) Publisher forwards to crew. (b) Crew forwards to next higher layer. (c) Co-leader forwards to all clusters.

Figure 3: Data forwarding in Nemo with a failed node: All nodes are able to receive the forwarded data despite a node failure. Note how a sender alternates
the packet destination among the crew members.

Figure 4 illustrates the delivery ratio during the group-
membership-change phase. The first graph shows the deliv-
ery ratio of Narada, followed by Nice, Nice-PRM(3,0.01)
and Nemo. As the figure illustrates, Nemo has a higher de-
livery ratio than the alternative protocols. The alternate data
paths in Nemo explain these improvements, as they enable
the early detection and retransmission of lost packets within
the allowed timeout interval.
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Figure 4: Delivery ratio (512 end hosts, high failure rate).

The summarized results for the two failure rates (high
and low) are presented in Table 1 and 2. Nice-PRM(3,0.02),
Nice-PRM(3,0.03) and Nemo achieve comparably high de-
livery ratio, significantly better than Nice and Narada.

The cost of a resilient multicast protocol can be mea-
sured in terms of duplicate packets per sequence number.
The second set of columns in Table 1 and Table 2 show
this overhead for the compared protocols. In both cases,
Nemo’s approach results in comparably high delivery ratios
with significantly lower cost in terms of duplicates per se-
quence number.

Protocol Delivery ratio Duplicate packets
Mean Std Mean Max Std

Nemo 0.998 0.89E-3 3.16 3.77 0.29
Nice-PRM(3,0.01) 0.993 1.25E-3 12.47 14.43 1.04
Nice-PRM(3,0.02) 0.994 1.23E-3 18.20 19.75 0.77
Nice-PRM(3,0.03) 0.994 1.01E-3 24.22 28.14 1.82
Nice 0.992 1.95E-3 7.10 8.32 0.71
Narada 0.852 60.3E-3 0.00 0.00 0.00

Table 1: High-Failure Rate (512 end hosts).

Protocol Delivery ratio Duplicate packets
Mean Std Mean Max Std

Nemo 1.000 0.12E-3 0.34 0.59 0.09
Nice-PRM(3,0.01) 0.999 0.56E-3 6.42 6.98 0.38
Nice-PRM(3,0.02) 0.999 0.36E-3 12.00 13.43 0.66
Nice-PRM(3,0.03) 0.999 0.27E-3 16.74 18.42 0.65
Nice 0.999 0.52E-3 1.29 1.92 0.40
Narada 0.950 38.3E-3 0.00 0.00 0.00

Table 2: Low Failure Rate (512 end hosts).

Under both failure rates, Nice-PRM incurs a higher num-
ber of duplicate packets than Nemo and Nice as a result of
PRM’s proactive randomized forwarding. As can be seen
from the alternative PRM configurations, the number of du-
plicate packets correlates well with its delivery ratio.

Figure 5 shows the cumulative distribution function
(CDF) of latency for all received packets with a 32-packet
buffer. Nemo’s co-leaders improve resilience by providing
alternative paths for packet forwarding. These alternative
paths, with delays higher than or equal to the optimal and
only choice in Nice, could introduce some latency penalties
for packet delivery. On the other hand, these same paths en-
sure the delivery of messages otherwise lost. Still, as Fig-
ure 5 shows, Nemo suffers no significant additional delays
for packets delivered without retransmission (left side of the
plot).
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Figure 5: Latency CDF (512 end hosts, high failure rate).

3.2. Wide-Area Results

The results presented here are based on twenty-five runs,
where each run is a set of one experiment per protocol,
done at different times of the day. We present represen-
tative graphs for Nemo, Nice and Nice-PRM(3,0.02). For
Nice-PRM we opted for a 2% forwarding probability since
this offers the best tradeoff between delivery ratio and num-
ber of duplicate packets.
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Figure 6: Delivery ratio (PlanetLab,∼72 end hosts, high failure rate).

Figure 6 shows the delivery ratio of one run each; the
packet losses observed during the warm-up interval are due
to the non-deterministic influence of the environment.

Protocol Delivery ratio Duplicate packets
Mean Std Mean Max Std

Nemo 0.979 0.010 1.27 2.53 0.56
Nice-PRM(3,0.02) 0.953 0.024 2.02 3.00 0.57
Nice 0.939 0.032 1.06 1.83 0.47

Table 3: Wide-Area Results with High Failure Rate (PlanetLab,∼72 end
hosts).

In Table 3 we summarize the runs of the wide area ex-
periment on PlanetLab. Nemo has a substantially higher de-
livery ratio than Nice-PRM, while incurring less duplicate
packets.

The latency distribution not shown here confirm the data
gathered through simulation, although the experienced la-

tencies are slightly higher in the wide area experiment (due
in part to user-level processing time). Nemo outperforms
Nice on the latency of packets requiring retransmission, as
Nemo’s alternate data paths translate into earlier packet-loss
detection and faster recovery.

4. Related Work

Banerjee et al. [3] introduce Nice and demonstrate the ef-
fectiveness of overlay multicast across large scale networks.
The authors also present the first look at the robustness of al-
ternative middleware multicast protocols under group mem-
bership changes. Nemo adopts the same implicit approach,
and its design draws a number of ideas from Nice such as its
hierarchical control topology. Nemo introduces co-leaders
to improve the resilience of the overlay.

A large number of research projects have addressed re-
liable and resilient multicast at the network layer [20, 26,
27, 19, 17, 14]. A comparative survey of these protocols is
given in [16, 23]. Like many of them, Nemo relies on reac-
tive techniques to recover from packet losses. STORM [26]
uses hierarchical NACKs for recovery: NACKs are sent
to parents (obtained from a parent list) until the packet is
successfully recovered or deemed obsolete. In the case of
Nemo, NACKs are used only to request missing packets
from neighbors who have indicated5 to cache them locally.

In the context of overlay multicast, a number of proto-
cols has been proposed to improve resilience [4, 9, 24, 18].
ZigZag [24] is a single source P2P streaming protocol that
achieves resilience by separating the control and data de-
livery trees at every level. That is, at each level one peer
is made responsible for the organization of the sub-tree
and a second one for dealing with data forwarding; in the
presence of failures, both peers share repair responsibili-
ties. In Nemo, the forwarding responsibility of a peer is
shared among its crew members and its repair algorithm
is fully distributed among cluster members. PRM [4] uses
randomized forwarding and NACK-based retransmission to
improve resilience. In contrast, Nemo relies on the con-
cept of acrewand opts only for deterministic techniques for
data forwarding. SplitStream [9] and CoopNet [18] improve
resilience by building several disjoint trees. In addition,
CoopNet adopts a centralized organization protocol and re-
lies on Multiple Description Coding (MDC) to achieve data
redundancy. Nemo is a decentralized peer-to-peer multicast
protocol which offers redundancy in the delivery path with
only a single control topology through the use of leaders and
co-leaders. We are exploring the use of data redundancy us-
ing forward error correction (FEC) encoding [7].

5Peers distribute the local cache state with every data packet they send.



5. Conclusions
We have presented Nemo, a new overlay multicast pro-

tocol designed for high resiliency from the ground up.
Through the introduction of co-leaders to minimize depen-
dencies and the use of triggered NACKs to detect lost pack-
ets, Nemo is able to achieve high delivery ratios under high
stress at a lower cost in terms of duplicate messages than
alternative protocols and without penalties in terms of ad-
ditional delays. We have demonstrated the effectiveness of
this approach through a comparative study using simulation
and wide-area experimentation, under different stress sce-
narios.
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