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Abstract

One of the most important challenges of peer-to-peer multicast protocols is the ability to
efficiently deal with the high degree of transiency inherent to their environment. As multicast
functionality is pushed to autonomous, unpredictable peers, significant performance losses can
result from group membership changes and the higher failure rates of end-hosts when compared
to routers. Achieving high delivery ratios without sacrificing end-to-end latencies or incurring
additional costs has proven to be a challenging task.

This paper introduces Nemo, a novel peer-to-peer multicast protocol that aims at achiev-
ing this elusive goal. Based on two simple techniques: (1)co-leadersto minimize depen-
dencies and, (2)triggered negative acknowledgments (NACKs)to detect lost packets, Nemo’s
design emphasizes conceptual simplicity and minimum dependencies, thus achieving perfor-
mance characteristics capable of withstanding the natural instability of its target environment.

We present an extensive comparative evaluation of our protocol through simulation and
wide-area experimentation. We compare the scalability and performance of Nemo with that
of three alternative protocols: Narada, Nice and Nice-PRM. Our results show that Nemo can
achieve delivery ratios(up to 99.9%)similar to those of comparable protocols under high failure
rates, but at a fraction of their cost in terms of duplicate packets(reductions> 90%)and control-
related traffic(reductions> 20%).

1 Introduction

Multicast is an efficient mechanism to support group communication. It decouples the size of the
receiver set from the amount of state kept at any single node and potentially avoids redundant com-
munication in the network. More of a decade after first being proposed, however, IP Multicast [17]
is not yet widely available due in part to a number of both technical and non-technical issues [18].

Recently, a number of researchers have proposed an alternate, peer-to-peer architecture for sup-
porting group communication applications over the Internet [16, 23, 20, 32, 13, 4, 12, 33, 44, 29, 36].
In this application-layer approach, participating peers organize themselves into an overlay topology
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for data delivery. The topology is an overlay in the sense that each edge corresponds to a unicast
path between two end systems or peers in the underlying Internet. All multicast related functional-
ity is implemented at the peers instead of at the routers, and the goal of the multicast protocol is to
construct and maintain an efficient overlay for data transmission.

Despite the undeniable advantages of this approach, a number of issues need to be addressed
if it is to become a practical alternative to IP Multicast [16, 7]. First, application-layer multicast
can result in higher stress on the network, as it is impossible to completely prevent multiple overlay
edges from traversing the same physical link [16, 4]. In addition, communication between peers may
involve visiting other peers, possibly resulting in higher latencies. Finally, as multicast functionality
is pushed to autonomous, unpredictable peers, significant performance loss can result from the end
hosts’ higher degree of transiency (a.k.a.churn) when compared to routers.

Efficiently handling the inherent high degree of churn on peer populations may well be the
primary challenge for these P2P architectures [7]. A good indication of churn is the peers’median
session time, wheresession timeis defined as the time between when a peer joins and leaves the
network. Measurement studies of widely used P2P systems have reported median session times
ranging from an hour to a minute [10, 22, 34, 14]. Achieving high delivery ratios under these
conditions, without incurring additional costs or sacrificing end-to-end latencies has proven to be a
difficult task.

This paper makes four main contributions. First, we introduce Nemo, a novel peer-to-peer mul-
ticast protocol that aims at achieving this elusive goal. Based on two techniques: (1)co-leadersand,
(2) triggered negative acknowledgments (NACKs), Nemo’s design emphasizes conceptual simplicity
and minimum dependencies [2], achieving in a cost-effective manner performance characteristics
capable of withstanding the natural instability of its target environment. Nemo’s approach is aimed
at applications, such as real-time audio and video streaming, that can benefit from high delivery
ratios without requiring perfect reliability, a model previously termedresilient multicast[39, 5]. In
this class of applications, receivers’ playback quality improves if delivery ratio can be increased
within specific latency bounds.

Second, we present simulation-based and wide-area experimentations showing that Nemo can
achieve high delivery ratios(up to 99.9%)and low end-to-end latency similar to those of comparable
protocols under high failures rates, while significantly reducing costs in terms of duplicate packets
(reductions> 90%)and control related traffic(reductions> 20%), making the proposed algorithm
a more scalable solution to the problem.

Third, Nemo addresses the resilience problem of tree-based multicast through the introduction
of co-leaders, alternating leaders that help avoid dependencies on single nodes, providing alternative
paths for data forwarding. We investigate the performance implications of different number of co-
leaders per cluster and report our findings.

Finally, we describe the use of periodic probabilistic operations for overlay maintenance and
discuss their effectiveness in dealing with highly dynamic environments.

The remainder of this paper is structured as follows. Section 2 outlines Nemo’s approach and
presents its design and operational details. We have performed an extensive evaluation of our pro-
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tocol through simulation and wide-area experimentation. We describe the experimental setups in
Sec. 3 and report our results in Sec. 4. Section 5 discusses related work and Sec. 6 concludes.

2 Nemo’s Approach

All peer-to-peer or application layer multicast protocols organize the participating peers in two
topologies: a control topology for group membership related tasks and a delivery tree for data
forwarding. Available protocols can be classified according to the sequence they adopt for their
construction [3, 16]. Nemo follows theimplicit approach[4, 12, 33, 44, 36] to building an overlay
for multicasting: participating peers are organized in a control topology and the data delivery net-
work is implicitly defined based on a set of forwarding rules which we will describe in the following
paragraphs.

Nemo organizes the set of communication peers into clusters, where every peer is a member of
a cluster at the lowest layer. Each of these clusters selects aleaderthat becomes a member of the
immediate superior layer. The process is thus repeated, with all peers in a layer being grouped into
clusters from where leaders are selected to participate in the next higher layer. Hence peers can lead
more than one cluster in successive layers of this logical hierarchy.

The formation of clusters at each level of the hierarchy is currently based on network proximity,
although other factors such as bandwidth [37, 15] and expected peer lifetime [10] could be easily
incorporated. Clusters vary in size betweenk and3k − 1, wherek is a constant known asdegree. 1

Our work focuses on improving the resilience of peer-to-peer overlay multicast systems. Before
discussing the details of our approach, in the following paragraphs we explain the dynamics of our
basic tree-based protocol, such as the joining and departure of peers, as well as Nemo’s probabilistic
approach to overlay maintenance.

2.1 Member Join and Departure

A new peer joins the multicast group by querying a well-known node, the rendezvous point, for
the IDs of the members on the top layer. Starting there and in an iterative manner, the incoming
peer continues:(i) requesting the list of members at the current layer from the cluster’s leader,(ii)
selecting from among them who to contact next based on the result from a given cost function, and
(iii) moving into the next layer. When the new peer finds the leader with minimal cost at the bottom
layer, it joins the associated cluster.

Members can leave Nemo in announced (graceful) or unanounced manner. Since a common
member has no responsibilities towards other peers, it can simply leave the group after informing
its cluster’s leader. On the other hand, a leader must first elect replacement leaders for all clusters it
owns; it can then leave its top layer after informing its cluster’s leader.

1This is common to both Nemo and Nice [4]; the bounds have been chosen to help reduce the degree of oscillation in
clusters.
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To detect unannounced leaves, Nemo relies on heartbeats exchanged among the cluster’s peers.
Unreported members are given a fixed time interval, orgrace period, before being considered dead.
Once a member is determined dead, a repair algorithm is initiated. If the failed peer happens to be a
leader, the tree itself must be fixed: the members of the victim’s cluster must elect the replacement
leader from among themselves.

To deal with dynamic changes in the underlying network, every peer periodically checks the
leaders of the next higher layers and switches clusters if another leader is closer than the current
one (thresholds are used to prevent oscillation). Additionally, in a continuous process of refinement,
every leader checks its highest owned cluster for better suited leaders and transfer leadership if such
a peer exists.

2.2 Splitting and Merging Clusters

Due to membership changes, clusters may grow/shrink beyond the cardinality bounds defined by
the clusters’ degree; such clusters must be dealt with to guarantee the hierarchical properties of the
protocol. Undersized clusters are merged with others while oversized ones are split into two new
ones. Both split and merge operations are carried on by the cluster’s leader.

If the size of a cluster falls bellow its lower bound, the cluster leader redirects all cluster mem-
bers to the leader of a neighbor cluster and, once the move has completed, it removes itself from the
(all) next higher layers.

When a cluster’s cardinality exceeds its upper bound, the cluster leader must split it into two
new clusters, each of size at least3k/2. The two new clusters are defined so to minimize the total
sum of path latencies (i.e. the cluster’s diameter). For this we employ a genetic algorithm [21] that,
although it may not yield as good an optimization as alternative approaches (such as exhaustive
search), it produces near optimal results at a fraction of their cost (the algorithm runs incn2 time,
with a small constantc, wheren is the size of the cluster). Finally, instead of selecting a leader for
each of the newly created clusters, the current leader automatically becomes the leader for one of
the emerging clusters, thus reducing the control overhead of leader demotion/promotion.

Cluster split and merge operations can be triggered by each arrival/departure event or invoked
through a periodic cluster-check operation. While the triggered approach strictly guarantees cluster
sizes, it can result in a significant performance overhead under high frequency membership changes.
Part of the problem stems from the time it takes for a new structure to be established (due to, among
other factors, propagation delays). During this period of time, joining nodes may face difficulties
finding their appropriate cluster. We opt for a periodic cluster-check operation as this limits the rate
of cluster changes and their associated costs. On the other hand, as a result of our periodic approach,
the cardinality of some clusters may temporarily lay outside the bounds stated by their degree.
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2.3 A Probabilistic Approach to Overlay Maintenance

Proactive recovery, where a system tries to react immediately to membership changes, adds addi-
tional stress to an already-stressed network [34]. Nemo relies on a set of periodic algorithms for
overlay maintenance in order to avoid congestion collapse, but adopts a probabilistic approach to
reduce the load on a possible stressed system.

In Nemo, some of the most costly maintenance operations, such as splitting, merging and re-
finement, are only executed with some probability or, alternatively, deferred to the next interval.
We refer to them asperiodic probabilistic operations. In the presence of high churn, many of these
operations can not only be deferred, but completely avoided as follow-up changes may revert a
previously triggering situation. For example, a stream of member departures/failures may leave a
cluster undersized, triggering a relatively expensive merge operation. If deferred, a series of sub-
sequent member joins may push the undersized cluster’s cardinality beyond its merge-triggering
bound.

In another example of the probabilistic approach to overlay maintenance, crew lists are dis-
tributed by the leader with some probability at the beginning of an epoch. The probability and the
epoch length are chosen such that the mean time of crew list exchanges follows an exponential dis-
tribution with a specified mean time. Changes to the crew list always force an update operation.
This guarantees that all peers store recent crew lists with high probability.

2.4 Planning for Node Failure

Tree-based overlay multicast protocols have proven to be highly scalable and efficient in terms of
physical link stress, state and control overhead, and end-to-end latency [23, 4, 14]. As other tree-
based structures, however, these proposed protocols have an inherent problem of resilience from
their dependence on the reliability of non-leaf nodes. The high-degree of transiency of end-systems
has been pointed out as one of the main challenges for these architectures [7].

Nemo addresses the resilience issue of tree-based systems through the introduction of co-
leaders. Every cluster leader recruits a number of co-leaders with whom it forms thecrew. Crew
lists are periodically distributed to the cluster’s members. Co-leaders improve the resilience of the
multicast group by avoiding dependencies on single nodes and providing alternative paths for data
forwarding. In addition, crew members share the load from message forwarding, thus improving
scalability. Figure 1 illustrates the logical organization of Nemo.

2.5 Data Forwarding

Nemo’s data delivery topology is implicitly defined by the set of packet-forwarding rules adopted.
A peer sends a message to one of the leaders for its layer. Leaders (the leader and its co-leaders)
forward any received message to all other peers in their clusters and up to the next higher layer. A
node in charge of forwarding a packet to a given cluster must select the destination peer among all
crew members in the cluster’s leader group. The algorithm is summarized in Fig. 2.
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Leader

Co−leader

Ordinary member

Crew

Figure 1: Nemo’s logical organization on the left side compared to the logical organization of a
basic tree-based overlay (e.g. Nice) on the right side. The shape illustrates only the role of a peer
within a cluster: a leader of a cluster at a given layer can act as co-leader or ordinary member at the
next higher layer.

FORWARD-DATA(msg)
1 R← ∅
2 if leader /∈ msg.sender crew
3 then R← R ∪ leader
4 for each child in children
5 do if child /∈ msg.sender crew
6 then R← R ∪ child
7 SEND(msg, R, sender crew ← crewOf(self))
8 if isCrewMember(self) andleader /∈ msg.sender crew
9 then R← ∅

10 R← R ∪ super leader
11 for eachneighbor in neighbors
12 do R← R ∪ neighbor
13 SEND(msg, R, sender crew ← crewOf(leader))

Figure 2: Data Forwarding Algorithm:SEND transmits a packet to a list of nodes, selecting the real
destination among the crew members associated with the given destination.

Figure 3 shows an example of the forwarding algorithm in action and illustrates Nemo’s re-
silience under different failure scenarios. The forwarding responsibility is evenly shared among
the leaders by alternating the message recipient among them. In case of a failed crew member, the
remaining (co-)leaders can still forward their share of messages in the tree. Lost messages are de-
tected and recovered, as described in the following section, thus achieving high data delivery ratios
even in the presence of crew members’ failures.

2.6 Data Retransmission

As other protocols aiming at high resilience [31, 5], Nemo relies on sequence numbers and
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(a) Publisher forwards to the crew
members.

(b) Crew members forward to next
higher layer.

(c) Co-leader forwards to all other
clusters, including its own.

Figure 3: Data forwarding in Nemo with a failed node: All nodes are able to receive the forwarded
data despite a node failure. Note how a sender alternates the packet destination among the crew
members.

triggered NACKs to detect lost packets.
Every peer piggybacks a bit-mask with each data packet indicating the previously received pack-

ets. In addition, each peer maintains a cache of received packets and a list of missing ones. Once
a gap (relative to a peer’s upstream neighbors) is detected in the packet flow, the absent packets are
considered missing after some fixed period of time. This time is selected to reduce the effect of
jitter and processing delays.2 For each missing packet, a NACK is sent to a peer caching it, and a
different timeout is set for retransmission.

The peer requesting the retransmission may not be the only one missing the packet. Ideally, the
requesting peer should forward the recovered packet to all other known peers (and only to those)

2In our current implementation this time is set to2 RTT to the farthest crew member.
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RECOVER-DATA(msg)
1 d← DOWNWARD ∪ UPWARD
2 for eachpacket in recent packets
3 do if isSameStream(packet, msg)
4 then if isChild(packet.sender crew)
5 then d← d ∩ ¬ UPWARD
6 if isLeader(packet.sender crew)
7 then d← d ∩ ¬ DOWNWARD
8 FORWARD(msg, direction← d)

Figure 4: Data Recovery Algorithm: The functionFORWARD forwards a packet as specified by a
logical direction (UPWARD and/or DOWNWARD).

who need it. To achieve this we have designed an efficient algorithm that, without incurring addi-
tional control traffic, helps us improve latency in delivery for retransmitted packets while reducing
the number of duplicates. The algorithm takes advantage of the fact that, over a reasonably small
window of time, a peer sees the packets from one source flowing in one logical direction.

After a peer has detected a lost packet, it initiates the recovery protocol and chooses the di-
rection in which to forward the recovered packet, if at all. No forwarding would be required if
all other peers have successfully received the packet. Otherwise, the forwarding direction will be
decided based on the flow direction of the follow-up packets:upward/downwardif the source is
logically below/above the recovering peer. The algorithm helps reduce the number of duplicate
packets generated indirectly by packet losses. A sketch of the algorithm is provided in Fig. 4.

3 Evaluation

We analyze the performance of Nemo using detailed simulation and wide-area experimentation.
We compare Nemo’s performance to that of three other protocols – Narada [16], Nice [4] and Nice-
PRM [5] – both in terms of application performance and protocol overhead.

It is worth noting that the implementation of all evaluated protocols is shared between the wide-
area and the simulation experiments. We achieve this by abstracting the protocols’ logic from the
environment-dependent functionality through well-defined interfaces. Thus, for any given protocol,
the difference in the code-base of the wide-area and the simulator implementations is limited to how
the communication between two peers is realized.

The remainder of this section describes the performance metrics employed, discusses imple-
mentation details of the compared protocols and describes our evaluation setup. Section 4 presents
the results for both simulation and wide-area experiments.
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3.1 Performance Metrics

We evaluate the effectiveness of the different protocols in terms of performance improvements to
the application and protocol’s overhead. Application performance is captured by delivery ratio,
end-to-end latency and connectivity, while overhead is evaluated in terms of number of duplicate
packets per sequence number and control-related traffic.

• Delivery Ratio:Ratio of subscribers which have received a packet within a fixed time window.
Disabled receivers are not accounted for.

• Latency:End-to-end delay (including retransmission time) from the source to the receivers,
as seen by the application. This includes path latencies along the overlay hops, as well as
queueing delay and processing overhead at peers along the path.

• Connectivity:Percentage of nodes that have received at least one packet in a 10-sec. interval.
That is, time is divided in 10-sec. intervals and connectivity is determined for each of those
intervals.

• Duplicate Packets:Number of duplicate packets for all receivers counted per sequence num-
ber, reflecting an unnecessary burden on the network. Packets arrived outside of the delivery
window are accounted for as duplicates, since the receiver already assumed them as lost.

• Control-Related Traffic:Total control traffic in the system, in MB per second, during the
failure interval. We measure the total traffic during the observation interval by accounting
packets at the router leve.

3.2 Details on Protocol Implementations

For each of the three alternative protocols, the values for the available parameters were obtained
from the corresponding literature.

For Narada [16], the number of directly connected peers (fanout) is set to six and may approach
12 for a short period of time. The distance vectors, the set of shortest-paths latencies to all other
peers, are exchanged in 10-sec. intervals. The timeout for detecting dead members is set to 60 sec.,
and the one for mesh partition repairs to 50 sec.

For Nice [4], heartbeats are sent at 10-sec. intervals. The cluster degree,k, is set to 3. The grace
period for dead neighbor detection is set to 15 sec.

Nice-PRM is implemented as described in [5, 6]. We used PRM-(3,0.01), PRM-(3,0.02) and
PRM-(3,0.03) with three random peers chosen by each node, and with one, two, and three percent
forwarding probability. Discover messages to locate random overlay nodes are sent with 5-sec.
intervals and a time-to-live (TTL) of 5 hops.

For Nemo, the cluster degree and the crew size are set to three. The grace period is set to 15 sec.
and the mean time between crew list exchanges is set to 30 sec.
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For the wide-area implementation, we employ UDP with retransmissions: ten attempts for heart-
beats and five for all other control traffic. Data communication does not employ retransmission.

Our implementations of the alternative protocols closely follow the descriptions from the liter-
ature, and have been validated by contrasting our results with the published values. However, there
are a number of improvements to the common algorithms, such as the use of periodic probabilistic
operations, that while part of Nemo were made available to all protocols in our evaluations. The
benefits from these algorithms help explain the performance improvements of the different proto-
cols with respect to their original publications [16, 4, 5]. We have opted for this approach to isolate
the contribution of PRM and co-leaders to the overall resilience of the multicast protocols.

For Nice, Nice-PRM and Nemo, we check the clusters every second, but limit the minimal
time between maintenance operations. Assuming that the triggering conditions are satisfied (an
undersized cluster, for example) and that there has not been a maintenance operation within the last
5 sec., a merge operation is executed with 1% probability, a split operation with 100% probability,
and a refinement operation with 1% probability. When the cluster’s cardinality falls bellow its lower
bound, we reduce the probability of execution of the refinement operation to 0.1% in an additional
attempt to avoid an expensive merge.

3.3 Experimental Setup

We performed our evaluations through detailed simulation using a locally written, packet-level,
event-based simulator and wide-area experimentation on PlanetLab, an internationally-deployed
test bed.

We ran our simulations using Inet [24], Transit-Stub and AS Waxman [43] topologies. In this
paper we present simulation results based on Inet topologies with 3,072 and 8,192 nodes and a
multicast group of 128, 256, 512, 1024, 2048 and 4096 members.3 Members are randomly attached
to routers, and a random delay of between 1 and 4 ms is assigned to every link.

Each simulation experiment lasts for 40 minutes (simulation time). All peers join the multicast
group by contacting the rendezvous point at uniformly distributed, random times within the first
200 sec. of the simulation. A warm-up time of 300 sec. is omitted from the figures. Starting
at 600 sec. and lasting for about 1200 sec., each simulation has a phase with rapid membership
changes. We exercise each protocol under two different failure rates during this phase. Under
a high-failure rate, nodes fail independently at a time sampled from an exponential distribution
(with mean,Mean Time To Failure, equal to 5 min.) to rejoin shortly after (time sampled from an
exponential distribution with mean,Mean Time To Repair, equal to 2 min.) [5]. The two means are
chosen asymmetrically to allow, on average, 5/7 of all members to be up during this phase. We also
run the same set of simulations with a lower failure rate given by a MTTF of 60 min. and a MTTR
of 10 min. [38].

3Comparable results were obtained with the different topologies and group sizes. For the complete set of results please
see [8].
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For the wide-area experiments we restrict our comparison to Nice, Nice-PRM and Nemo with
between 60 and 200 members distributed across∼90 sites. The number of members per site varies
from 1 to∼12, with most sites having two members. As in our simulation experiments, we inject
failures at the low and high failure rate (MTTF = 60 and 5 min. and MTTR = 10 and 2 min.,
respectively). Each protocol runs during 30 min. with a 10 min. failure injection. The order of the
three protocols is randomly chosen.

For the simulation, we generate a failure event sequence based on the above MTTF and MTTR.
The same sequence is used for all protocols and all runs. In the wide-area experiment, the fail-
ure events are drawn from a exponential distributed random number generator with mean equal to
MTTF and MTTR.

To estimate the end-to-end delay, we make use of a global time server. Every peer estimates the
difference of its local time to the time at the server. The algorithm is inspired by [28] and leads to
sufficient accuracy for our application.

In all experiments, we model a single source multicast stream to a group. The source sends
constant bit rate (CBR) traffic of 100 B payload at a rate of 10 packets per second. The buffer size
is set to 32 packets, which corresponds to the usage of a 3.2-second buffer, a realistic scenario for
applications such as multimedia streaming.

4 Experimental Results

This section presents and discusses our results from both simulation and wide-area evaluations.
Simulation-based experiments allow us to analyze the scaling properties of each approach and to
better understand their behavior under controlled, reproducible settings. Wide-area evaluations help
us understand how the different protocols behave in dynamic and unpredictable Internet environ-
ments, and give us an idea of the end-to-end performance experienced by applications.

Before discussing the simulation and wide-area experimental results, we digress briefly to eval-
uate the trade-offs of different crew sizes for Nemo.

4.1 Determining the Right Crew Size

Nemo introduces the concept of co-leaders and crews in order to improve the resilience of the
multicast group. Leaders from every cluster recruit co-leaders to form their crew and distribute the
crew composition to the cluster’s members. Co-leaders help improve the resilience of the multicast
group by avoiding dependencies on single nodes and providing alternative paths for data forwarding.
With shared forwarding responsibility, crew members also share network load, making larger crews
more attractive for high (and fair) load distribution.

The size of a crew is upper-bounded by the cluster size, which is defined by its degreek and
may range fromk to 3k − 1 nodes. In Banerjee et al. [4], the authors used 3 as a reasonable choice
for the cluster degree. The cluster size is the guaranteed number of peers in a cluster, thus a crew

11



Table 1: Crew Size (512 end hosts, high failure rate).
Nemo’s Crew
Size

Delivery ratio Connectivity Duplicate

Mean Std Mean Std Mean Max Std
Nemo-C1 0.992 1.95E-3 0.9975 1.02E-3 7.10 8.32 0.71
Nemo-C2 0.997 0.81E-3 0.9996 0.19E-3 3.01 3.69 0.31
Nemo-C3 0.998 0.89E-3 0.9998 0.21E-3 3.16 3.77 0.29
Nemo-C4 0.998 0.52E-3 0.9998 0.21E-3 3.67 4.18 0.27
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Figure 5: Delivery ratio (512 end hosts, high failure rate).

size larger than the degree cannot be enforced in all clusters.
In trying to determine the ideal crew size, we experimented with different values through sim-

ulation. Table 1 compares different alternatives in terms of delivery ratio, number of duplicates
and degree of connectivity obtained from twenty-five simulations per crew size. As is shown in the
table, an increase of the crew size gives a performance advantage with near equal or less overhead
in terms of duplicate packets. This advantage becomes less pronounced as the crew size exceeds the
cluster degree.

The results reported in the remainder of this section are all based on a crew size of 3, since this
seems to offer a good balance in terms of delivery ratio, connectivity and rate of duplicates.

4.2 Simulation Results

For our simulation-based evaluation we employ SPANS, a locally written, packet-level simulator
and a variety of generated topologies. Here we report results of twenty-five runs per protocol ob-
tained with Inet topologies.
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Table 2: High-Failure Rate (512 end hosts).
Protocol Delivery ratio Connectivity Duplicate packets

Mean Std Mean Std Mean Max Std
Nemo 0.998 0.89E-3 0.9998 0.21E-3 3.16 (45%) 3.77 0.29
Nice-PRM(3,0.01) 0.993 1.25E-3 0.9989 0.28E-3 12.47 (175%) 14.43 1.04
Nice-PRM(3,0.02) 0.994 1.23E-3 0.9993 0.22E-3 18.20 (256%) 19.75 0.77
Nice-PRM(3,0.03) 0.994 1.01E-3 0.9993 0.17E-3 24.22 (341%) 28.14 1.82
Nice 0.992 1.95E-3 0.9975 1.02E-3 7.10 (100%) 8.32 0.71
Narada 0.852 60.3E-3 0.8534 57.9E-3 0.00 (0%) 0.00 0.00

Table 3: Low Failure Rate (512 end hosts).
Protocol Delivery ratio Connectivity Duplicate packets

Mean Std Mean Std Mean Max Std
Nemo 1.000 0.12E-3 1.0000 0.02E-3 0.34 (26%) 0.59 0.09
Nice-PRM(3,0.01) 0.999 0.56E-3 0.9999 0.12E-3 6.42 (498%) 6.98 0.38
Nice-PRM(3,0.02) 0.999 0.36E-3 0.9999 0.07E-3 12.00 (930%) 13.43 0.66
Nice-PRM(3,0.03) 0.999 0.27E-3 0.9999 0.05E-3 16.74 (1298%) 18.42 0.65
Nice 0.999 0.52E-3 0.9998 0.16E-3 1.29 (100%) 1.92 0.40
Narada 0.950 38.3E-3 0.9548 36.2E-3 0.00 (0%) 0.00 0.00

Figure 5 shows the average delivery ratios per sequence number of all runs, for the four protocols
evaluated, under high failure rate. The first graph shows the delivery ratio of Narada, followed by
Nice, Nice PRM(3,0.01) and Nemo. Nemo’s high delivery ratio is due to the alternate data paths
offered by crew members, as they enable the early detection and retransmission of lost packets
within the allowed timeout interval. The delivery ratio of Narada suffers most from the special
characteristic of the failure event sequence we used for this simulation.

Tables 2 and 3 summarize the results for both high and low failure rates, respectively. Nemo,
Nice-PRM(3,0.02) and Nice-PRM(3,0.03) achieve comparably high delivery ratio, significantly bet-
ter than Nice and Narada.

The second set of columns in Tables 2 and 3 show the connectivity achieved by the compared
protocols. The reported connectivity results presented are computed for a time interval of 10 sec.,
which is less than the specified grace period. Ideally, we aim at 100% connectivity. In both cases,
Nemo offers the highest connectivity and the difference is more significant under high failure rate.

The cost of a resilient multicast protocol can be measured in terms of duplicate packets. The
third set of columns in Tables 2 and 3 show this overhead for the compared protocols.

Nemo features the highest delivery ration of 99.8% under high failure rate. Nice and Nice-PRM
achieve a delivery ratio of between 99.2% and 99.4%. Previous work [5] accounted link losses in
simulation and reported a similar delivery ratio for Nice-PRM, but a substantial lower delivery ratio
for Nice without retransmission. Our results clearly show that without losses at the network layer,
the effectiveness of PRM is only minor for a protocol such as Nice. In terms of overhead, Nemo’s
approach results in the lowest number of duplicates (3.16 per sequence number) even outperforming
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Figure 6: Latency CDF (512 end hosts, high failure rate).

Nice (7.10). Nice-PRM has a significantly higher cost than both Nice and Nemo with up to 24.22
duplicates per sequence number, partially due to its random forwarding component.

Under low failure rate Nemo achieves nearly perfect delivery of 100%, while incurring an over-
head of just 0.34 duplicates per sequence number. Similar to the case with high-failure rate, Nice
and Nice-PRM achieve a slightly lower delivery ratio (99.9%), but at substantially higher costs,
1.29 and 16.74 duplicates per sequence number respectively. Nemo’s multiple crew members and
its retransmission approach help explain these improvements, as the former results in alternate paths
that increase the effectiveness of NACKs and the latter ensures delivery to other peers (potentially)
missing the packet, thus reducing the total amount of retransmissions.

Under both failure rates, Nemo’s approach results in comparably high delivery ratios at signif-
icantly lower cost in terms of duplicates. Nice-PRM incurs a higher number of duplicate packets
than Nemo and Nice as a result of PRM’s proactive randomized forwarding. As can be seen from the
alternative PRM configurations, the number of duplicate packets correlates with its delivery ratio.

Nemo’s higher resilience with low overhead comes at no cost in terms of latency, as can be
observed in Fig. 6. The graph shows the cumulative distribution function (CDF) of latency for
all received packets under high failure rate and a buffer of 32 packets, which corresponds to a 3.2-
second delay. Nemo introduces alternative paths to improve resilience. These alternative paths, with
delays higher than or equal to the optimal and only choice in Nice, might introduce some latency
penalties for packet delivery. As can be observed in the graph, the advantage of delivering more
packets outweighs the potential latency cost, and Nemo suffers no noticeable additional delays for
packets delivered without retransmission as seen on the left side of the plot.

Table 4 summarizes the results for different group sizes.4 Nemo’s approach scales linearly

4Due to Narada’sO(n2) memory consumption for simulations, we were not able to obtain data for Narada with group
sizes larger than 1024 peers. A Narada peer stores information for every other peer in the group, whereas Nemo, Nice
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Table 4: Scalability (8192 routers, high failure rate). Nice-PRM is configure with 3 random peers
and 2% probability (PRM(3,0.02)).

Size Delivery ratio Duplicate packets Control Traffic [MBps]
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128 0.999 0.995 0.996 0.957 0.43 4.79 1.24 0.00 0.12 0.18 0.12 0.74
256 1.000 0.997 0.991 0.863 0.41 7.63 2.04 0.00 0.25 0.32 0.24 3.12
512 0.999 0.998 0.995 0.882 1.30 14.70 4.70 0.00 0.52 0.69 0.48 13.07
1024 0.999 0.997 0.994 0.848 2.78 28.44 9.33 0.00 1.03 1.37 0.95 54.44
2048 0.999 0.995 0.995 − 5.70 63.01 15.82 − 2.03 2.69 1.99 −
4096 0.999 0.996 0.993 − 10.95 120.40 34.05 − 4.24 5.36 3.78 −

with the group size while maintaining a very high delivery ratio. The cost per receiver is constant
for Nemo, Nice and Nice-PRM, independent of the group size, showing the scalability of the hi-
erarchical approach. Narada suffers from its extremely high control traffic for larger group sizes.
The control traffic given in the table corresponds to the total control traffic in the system during
the failure interval, with only5/7 of the total population up and running. With a group size of
1024 peers, Nemo has 1.41 KBps (KBytes per second) overhead per node, lower than Nice-PRM’s
control overhead of 1.87 KBps. Nice has the lowest control overhead of 1.29 KBps, while Narada
incurs a control traffic of 74.4 KBps per node. Note that control traffic omits duplicate packets,
which are accounted for separately, but includes all parts of control traffic (such as header sizes),
which might explain the slight overhead cost when contrasted with previously published results [4].

4.3 Wide-Area Results

The results presented here are based on twenty-five runs, each a set of one experiment per protocol.
At every step we schedule, in a random order, one experiment for each of the protocols evaluated.
During the experiments the controller only sent control traffic to inject failures on the peers over
the network. The results were stored locally at the peers and fetched by the controller at the end of
the experiment before the evaluation of the next protocol started. Once one step was completed, the
next step was initiated until twenty-five runs each were complete. Given this procedure, we took
several measurements at different times of the day.

In this section we present representative graphs for Nemo, Nice and Nice-PRM(3,0.02). We
chose 2% forwarding probability for Nice-PRM, since this offers the best tradeoff between high
delivery ratio and low number of duplicate packets.

Figure 7 shows the delivery ratio of one run each; the packet losses observed during the warm-
up interval are due to the non-deterministic influence of the environment. The graphs confirm the

and Nice-PRM peers only storeO(log n) data entries.
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Figure 7: Delivery ratio (PlanetLab,∼72 end hosts, high failure rate).

Table 5: Wide-Area Results (PlanetLab,∼72 end hosts). The statistics include the packets with
sequence numbers from 6,000 to 12,000. Nice-PRM is configure with 3 random peers and 2%
probability (PRM(3,0.02)).

Protocol High Failure Rate Low Failure Rate
Delivery ratio Duplicate packets Delivery ratio Duplicate packets
Mean Std Mean Max Std Mean Std Mean Max Std

Nemo 0.979 0.010 1.27 (120%) 2.53 0.56 0.996 0.003 0.52 (173%) 1.10 0.27
Nice-PRM 0.953 0.024 2.02 (191%) 3.00 0.57 0.997 0.003 1.37 (457%) 1.68 0.15
Nice 0.939 0.032 1.06 (100%) 1.83 0.47 0.991 0.011 0.30 (100%) 1.22 0.23

previously obtained simulation results.
In Table 5 we summarize the runs of the wide-area experiments on PlanetLab with a group size

of about 72 peers. The improvements that PRM brings to Nice’s resilience become clear in this
more realistic setting (with paths experiencing losses, for example). Still, Nemo outperforms both
Nice (93.9%) and Nice-PRM (95.3%) with a delivery ratio of 97.9% under high failure rates. In
terms of duplicates per sequence number, Nemo’s cost of 1.27 is substantially lower than that of
Nice-PRM (2.02) and comparable to that of Nice. Clearly, the number of duplicates incurred by
a protocol is positively correlated with its delivery ratio (a lower delivery ratio results in a lower
rate of duplicates for any protocol). When taken this into consideration, Nemo’s relative savings
in terms of duplicates packets under high failure rate become more significant. Under low failure
rate the three protocol offer similar delivery ratio, although Nemo achieves this with a substantially
lower rate of duplicate packets (0.52) when compared with Nice-PRM (1.37).

We show the latency distribution achieved in one of the wide-area experiment in Fig. 8. The data
sets correspond to the plots shown in Fig. 7. The three graphs confirm the data gathered through
simulation (although the experienced latencies are slightly higher in the wide-area experiment).
Nemo outperforms Nice in the latency of packets requiring retransmission, as Nemo’s alternate data
paths translate into earlier packet-loss detection and faster recovery. We see that the slope of the
plot starting at 0.2 seconds latency is steeper to the right for Nemo, due in part to recovered packets.

16



0.01 0.1 1 10
Latency [s]

100 k

200 k

300 k

400 k

R
ec

ei
ve

d 
P

ac
ke

ts

Nemo
Nice
Nice PRM(3,0.02)

Figure 8: Latency CDF (PlanetLab,∼72 end hosts, high failure rate).

Table 6: Wide-Area Results (PlanetLab,∼130 end hosts). The statistics include the packets with
sequence numbers from 6,000 to 12,000. Nice-PRM is configure with 3 random peers and 2%
probability (PRM(3,0.02)).

Protocol High Failure Rate Low Failure Rate
Delivery ratio Duplicate packets Delivery ratio Duplicate packets
Mean Std Mean Max Std Mean Std Mean Max Std

Nemo 0.964 0.029 2.19 (172%) 3.62 0.99 0.982 0.010 2.27 (214%) 6.57 1.36
Nice-PRM 0.933 0.024 3.77 (297%) 6.40 1.50 0.981 0.019 3.44 (325%) 6.04 1.07
Nice 0.914 0.070 1.27 (100%) 2.72 0.80 0.974 0.030 1.06 (100%) 2.15 0.44

In Table 6 we summarize the runs of the wide-area experiments on PlanetLab with a larger
group size of about 130 peers. Compared to the results with the smaller group size, we see that the
delivery ratio is lower for all three protocols. Nemo has the highest delivery ratio under low and
high failures. The cost in terms of duplicate packets is larger than we would expect by looking at
the smaller group size results. This is in part due to PlanetLab’s changing characteristics. First, we
use a larger and different set of nodes for the second group size experiments. Second, PlanetLab is
a shared environment, where experiments compete for resources.

5 Related Work

All peer-to-peer or application-layer multicast protocols organize the participating peers in two
topologies: a control topology for group membership related tasks, and a delivery tree for data
forwarding. Available protocols can be classified according to the sequence adopted for their con-
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struction [3, 16]. In a tree-first approach [20, 23, 32], peers directly construct the data delivery tree
by selecting their parents from among known peers. Additional links are later added to define, in
combination with the data delivery tree, the control topology. With a mesh-first approach [16, 13],
peers build a more densely connected graph (mesh) over which (reverse) shortest path spanning
trees, rooted at any peer, can be constructed. Protocols adopting an implicit approach [4, 12, 33, 44]
create only a control topology among the participant peers. Their data delivery topology is implicitly
determined by the defined set of packet-forwarding rules.

Banerjee et al. [4] introduce Nice and demonstrate the effectiveness of overlay multicast across
large scale networks. The authors also present the first look at the robustness of alternative overlay
multicast protocols under group membership changes. Nemo adopts the same implicit approach,
and its design draws a number of ideas from Nice such as its hierarchical control topology. Nemo
introduces co-leaders to improve the resilience of the overlay and adopts a periodic probabilistic
approach to reduce/avoid the cost of membership operations.

A large number of research projects have addressed reliable and resilient multicast at the net-
work layer [31, 39, 41, 30, 26, 19]. A comparative survey of these protocols is given in [25, 35].
Like many of them, Nemo relies on reactive techniques to recover from packet losses. STORM [40]
uses hierarchical NACKs for recovery: NACKs are sent to parents (obtained from a parent list) until
the packet is successfully recovered or deemed obsolete. In the case of Nemo, NACKs are used
only to request missing packets from neighboring peers who are known to cache them locally.

In the context of overlay multicast, a number of protocols have been proposed aiming at high
resilience [5, 11, 36, 29]. ZigZag [36] is a single source P2P streaming protocol. Resilience is
achieved by separating the control and data delivery trees at every level, with one peer being held
responsible for the organization of the sub-tree and a second one dealing with data forwarding. In
the presence of failures, both peers share repair responsibilities. In Nemo, the forwarding respon-
sibility of a peer is shared among its crew members and its repair algorithm is fully distributed
among cluster members. PRM [5] uses randomized forwarding and NACK-based retransmission to
improve resilience. In contrast, Nemo relies on the concept of acrewand opts only for deterministic
techniques for data forwarding. SplitStream [11] and CoopNet [29] improve resilience by building
several disjoint trees. In addition, CoopNet adopts a centralized organization protocol and relies
on Multiple Description Coding (MDC) to achieve data redundancy. Nemo is a decentralized peer-
to-peer multicast protocol which offers redundancy in the delivery path with only a single control
topology through the use of leaders and co-leaders. We are exploring the use of data redundancy
using forward error correction (FEC) encoding [9].

RON [1] introduces alternate paths to recover from path outages and periods of degraded per-
formance. It routes around failures by using intermediate hops. Nemo adopts a similar approach, as
its forwarding algorithm chooses among several alternate paths for each packet. oStream [42] takes
advantage of the strong buffering capabilities of end hosts to provide asynchronous streaming mul-
ticast. Nemo relies on these same capabilities of peers in order to support the local retransmission
of lost packets.

In the context of structured peer-to-peer overlay networks, [27] proposes to dynamically adjust
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protocol parameters, such as heartbeat intervals and grace periods, based on the operating condi-
tions. Similar to Nemo, it tries to reduce the maintenance cost without failures while still providing
high resilience. Nemo’s approach differs in the way that it uses a static low cost algorithm, which
handles an increased level of churn with comparatively low cost. Nemo’s refinement algorithm
could potentially benefit from their technique by adjusting the refinement interval based on the ex-
perienced membership change rate and the measured dynamics of the underlying physical network,
thus reducing the total control overhead.

6 Conclusions

We have described Nemo, an overlay multicast protocol capable of attaining high delivery ratio
without its associated costs. Through the introduction of co-leaders and the use of triggered NACKs,
Nemo achieves its resilience goals, without sacrificing end-to-end latency or incurring additional
costs in terms of duplicate packets or control-related traffic. We have demonstrated the effectiveness
of our approach through simulation and wide-area experimentation under different stress scenarios.

Nemo’s probabilistic approach has proved to be effective in reducing the negative effects of
high levels of churn, while still providing an asymptotic convergence to an optimally stable state.
Wide-Area experimentations show that Nemo achieves high delivery ratio (> 96.4%) with a small
buffer size (3.2 seconds) in a real-world environment with∼130 peers and a high churn rate (> 37
joins and failures per minute), while maintaining comparatively low overhead.
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