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ABSTRACT
The risk of placing an undesired load on networks and
networked services through probes originating from mea-
surement platforms has always been present. While several
scheduling schemes have been proposed to avoid undue
loads or DDoS-like effects from uncontrolled experiments,
the motivation scenarios for such schemes have generally
been considered “sufficiently unlikely” and safely ignored by
most existing measurement platforms. We argue that the
growth of large, crowdsourced measurement systems means
we cannot ignore this risk any longer.

In this paper we expand on our original lease-based
coordination scheme designed for measurement platforms
that embrace crowdsourcing as their method-of-choice. We
compare it with two alternative strategies currently imple-
mented by some of the existing crowdsourced measurement
platforms: centralized rate-limiting and individual rate
limiting. Our preliminary results show that our solution
outperforms these two naive strategies for coordination
according to at least two different intuitive metrics: resource
utilization and bound compliance. We find that our scheme
efficiently allows the scalable and effective coordination of
measurements among potentially thousands of hosts while
providing individual clients with enough flexibility to act on
their own.
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1. INTRODUCTION
The risk of placing an undesired load on the network

through probes originating from measurement platforms
has always been present. Several scheduling schemes have
been previously proposed to avoid undue loads or DDoS-
like effects from uncontrolled measurement campaigns. So
far, the motivation scenarios for such schemes have generally
been considered “sufficiently unlikely”.

In practice, most traditional measurement platforms have
opted for indirectly managing this risk by limiting the
number of probes each individual measurement node can
perform (e.g., with local rate limits) or by including an
Acceptable User Policy appealing to good network etiquette
to minimize complaints from network administrators [8].

We argue that the growth of new, crowdsourced, large-
scale platforms [4, 11–13] make this approach no longer
feasible. The scale and inherent volatility of these platforms
mean that these simple approaches will, with time, translate
into either valuable resources or overloaded networks. A
simple scheme that generates a centralized optimal probing
schedule for nodes to follow is not feasible, given the lack
of control over clients’ availability and will naturally result
in an overly conservative use of the platform. Limiting the
number of probes and clients assigned to a specific desti-
nation is almost guaranteed to yield sub-optimal results, as
there’s no assurance of when clients will launch the assigned
probes (due to limited resources), or even how many of the
assigned probes will actually be completed (a client might
simply disappear in the middle of an experiment).

We have been exploring an alternative lease-based ap-
proach for measurement coordination in the context of our
work on Dasu [11]. With our approach, clients are peri-
odically assigned “measurement budgets” through the use
of “experiment leases”. The budget specifies the maximum
number of probes that a client is allowed to launch (on a per-
destination basis) before the lease expires. These budgets
are dynamically computed for individual clients based on
the aggregate behavior of the system.

In this paper, we expand on our original description and
evaluate our proposed solution. We compare our approach
with two alternative strategies currently implemented by
some of the existing crowdsourced measurement platforms:
centralized rate-limiting and individual rate limiting. Our
analysis illustrate the value of our flexible approach in terms
of both resource utilization and bound compliance. We
find that our scheme efficiently allows the scalable and
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effective coordination of measurements among potentially
thousands of hosts while providing individual clients with
enough flexibility to act on their own.

2. PROPOSED SOLUTION
In the following paragraphs, we describe the two con-

structs employed in our solution —Experiment Leases and
Elastic Budgets— and provide a high-level explanation of
our coordination approach. We conduct our analysis in
the context of Dasu [11], a software-based measurement
platform hosted by voluntary nodes located at the edge of
the network and supports both controlled network experi-
mentation and broadband characterization.1

Experiment Leases. To support the necessary fine-
grained control of resource usage, we use the concept of
experiment leases. In general, a lease is a contract that
gives its holder specified rights over a set of resources for
a limited period of time [5]. An experiment lease grants
to its holder the right to launch a number of measurement
probes, using the common infrastructure, from or toward
a particular network location. Origin and/or targets for
the probes can be specified as IP-prefixes, domain names
or website urls; other forms, such as geographic location,
could be easily incorporated.

To coordinate the use of resources by measurement clients
taking part in an experiment, we rely on a distributed
coordination service [6]. This coordination service runs on
well-provisioned servers (PlanetLab nodes) using replication
for availability and performance. Clients receive the list of
coordination servers as part of the experiment description.

Before beginning an experiment, clients contact a coordi-
nation server to announce they are joining the experiment
and obtain an associated lease. As probes are launched, the
clients submit periodic updates to the coordination servers
about the destinations being probed. This information is
used to compute estimated aggregate load per destination
and to update the associated entries in the experiment lease.
Before running a measurement, each client checks whether it
violates the constraint on the number of probes allowed for
the associated destination, and if so, delays it. After a lease
expires, the host must request a new lease or extend the
previous one before issuing a new measurement. The choice
of the lease length presents a trade-off between minimizing
overhead on the coordination service versus minimizing
client overhead and maximizing the use of clients’ resources.

Elastic Budget. An experiment lease grants to its holder
the right to launch a number of measurement probes (i.e.,
a budget) from or toward a particular network location.
Due to churn and user-generated actions, the number
of measurement probes a client can launch before lease
expiration (i.e., the fraction of the allocated budget actually
used) can vary widely. To account for this, we use the idea
of elastic budgets that expand and contract based on system
dynamics.

Elastic budgets are computed by the coordination service
and used to update bounds on experiment leases distributed
to clients. The service calculates the elastic budget period-
ically, based on the current number of clients participating
in the experiment and the number of measurement probes
allowed, assigned, and completed by each client. The

1For a more detailed explanation of Dasu’s architecture and
our coordination approach please refer to [10].

coordination service uses this elastic budget to compute
measurement probe budgets for the next lease period for
each participating client.

The budget is computed in the following way:

Let,

d, destination
M, aggregate max # probes per unit time to dest d
m, max # of probes per unit time a client will launch
n, # of clients in the experiment
ai, # of probes to dest d assigned to client i
ci, # of probes to dest d completed by client i
pi, completion rate of allowed probes in recent past

Then,

Budget =

{
M/n if M/n < ppm
ppm if M/n > ppm

where,

ppm =

n∑
i=1

pi ∗ f(i)

f(i) =

{
ai − ci if (ai -ci) < m
m if (ai - ci) > m

This approach is well suited for experiments where the
server knows a priori what destinations each client should
probe. In the case of experiments where the destinations to
be probed are not assigned by the server, but obtained by the
clients themselves (through a DNS resolution, for example),
the same approach can be used if we conservatively assume
that a client will launch the maximum number of probes per
unit of time whenever it is online.

3. APPROACH
To evaluate the efficacy of our approach, we run extensive

tests using simulated Dasu clients. The experiment consists
of a number of Dasu clients probing a common /24 prefix,
with an imposed maximum load in the number of aggregate
probes per minute allowed towards the destination. The
experiments highlight how our coordination scheme behaves
in terms of resource utilization, scalability, and bound
compliance.

We define two key metrics to measure the efficiency of
our proposed solution, Bound compliance and Resource
utilization. Bound compliance refers to both how quickly
the algorithm reacts to violations and what penalty is paid
when a violation was reached, i.e., how many excess probes
were launched towards the destination during that time
period. Resource utilization refers to how effectively the
solution utilizes existing system resources. Given that Dasu
clients are available for limited amounts of time, we want to
maximize utilization of their resources. As such we look to
see if clients could have launched a larger number of probes
while remaining under the aggregate limits imposed by the
system.

3.1 Experimental setup
When a number of probes is assigned to a client, it is

necessary to consider how long it will take for it to probe



those destinations or whether it will probe them at all.
The completion time of an experiment can vary sharply
between Dasu clients, mainly because the number of probes
that a client sends (from those scheduled) depends both
on the client’s uptime (will the client complete the entire
experiment?) and the client’s load.

For our experiments, we provision a set of coordination
servers that clients periodically contact as experiments
progress. To achieve greater flexibility on the parameters we
evaluate, we chose to conduct our experiments using simu-
lated Dasu clients. While the communication library used
by clients to contact the coordination servers is unmodified,
the simulated clients do not actually launch the requested
probes. Instead, clients follow a fixed-interval periodic
probing schedule that simulates probes and attempts to
launch the maximum number of probes possible per unit
of time, as permitted by the client’s local rate limits. Probe
delays are introduced into this periodic probing mechanism
by simulated client CPU and bandwidth load.

This setup allows us to independently manipulate the
different parameters that impact experiment completion
times, as well as isolate their impact on the different
components of our coordination solution. The four variable
parameters we evaluate are: (a) clients’ resource utilization
(both in terms of CPU and bandwidth), (b) inter-arrival
times of clients joining the experiment, (c) client-server
communication delays, as well as (d) clients uptime. We
model these parameters based on the population of real
Dasu clients. This ensures that the mix of clients in the
experiment reflects the correct distribution with respect to
real Dasu-client population, and that clients’ behavior is
based on real Dasu traces.2

3.2 Experiment
The server assigns each of the 40 Dasu clients 100

probes to be launched towards a common /24 prefix as
soon as possible. The target maximum aggregate probe
rate for the destination prefix is set to 100 probes per
minute. Depending on the number of clients actively
participating in the experiment, the number of probes per
client is dynamically adjusted as the experiment progresses,
as negotiated through the Experiment Lease and assigned
Elastic Budget. Clients probe the destination /24 prefix
according to their own local rate-limits and CPU/bandwidth
load. To reduce the duration of the experiment simulation,
we scale it down by reducing the basic unit time from
1 minute to 10 seconds: the local rate-limiting at the
simulated clients will send up to five probes within the 10-
second window, instead of the usual 60.

As clients join the experiment, the coordination service
dynamically adjusts the maximum number of probes the
clients are allowed to launch (their individual elastic bud-
gets) based on the current number of clients participating in
the experiment, the number of measurement probes allowed,
and the number of probes assigned and completed by each
client.

4. EVALUATION
In this section we evaluate the impact of individual com-

ponents on both resource utilization and bound compliance.

2For a detailed discussion of the distribution of the Dasu-
client population please refer to [10]

Parameter Value

Lease duration 60 seconds
Budget interval 10 seconds
Report interval 10 seconds
Elasticity 0-0.5-1
Number of clients 40
Number of probes per client 300
Client Inter-arrival Times 0-10 seconds
Communication delay 0-1000 ms
Local client rate limit 5 probes
Bandwidth profile 60% download
CPU profile 10% utilization

4.1 Impact of Elastic Budget limits
We start by looking at how different elastic budget thresh-

olds affect the overall performance of our solution, both
in terms of bound compliance and experiment completion
time. Recall that elastic budgets expand and contract
based on system dynamics and are used to update bounds
on experiment leases distributed to Dasu clients by the
coordination service. As such, the elasticity of the budget
assigned to a client depends in part on its completion rate
of allowed probes in the recent past; i.e. clients that were
allowed to send x number of probes in the previous lease
period but only sent y probes (where y < x) will be allowed
some elasticity to exceed their allocated limit in the next
lease period. This limit is expressed as the fraction of probes
over their allocated budget that clients are allowed to exceed.

We evaluate the impact of different elasticity settings
by launching the same experiment consecutive times, while
allowing the coordination service to assign different elasticity
thresholds to the clients. In the tighter scenario –an
elasticity of 0.00– clients are never allowed to exceed their
allocated budget, even when the number of probes sent in
the past was smaller than allowed. Similarly, an elasticity
of 1.00 allows the coordination service to assign clients a
flexibility of up to 1.00, i.e. twice the amount of probes
specified in their budget for the next lease period, depending
on their past performance. Note that an elasticity of 1.00
does not mean clients are allowed to exceed the limit all
the time. Instead the elasticity is computed based on their
performance and can reach up to 1.00 if they sent no probes
in the past lease period. For example, a client that was
allowed 20 probes in the previous lease period but only
managed to launch 15 probes in the allotted time will be
allowed an elasticity of 1-15/20 = 0.25, for the next lease
period.

Figure 1 shows the impact of Elastic Budget limits on
bound compliance for three different elasticity settings. The
figure plots the number of aggregated probes towards the
destination (y-axis) against time (x-axis). The figure shows
that an elasticity setting of 0.00 allows for tighter control
of the aggregate number of probes sent around the specified
bound (set to 100 probes). As expected, higher elasticity
values increase the probability of going over the specified
bound, but only briefly, as the subsequent lease updates
drives the probing rate to expected values below the bound.
It can be seen that an elasticity value of 1.00 allows for a
temporary spike of up to 20% over the specified limit, for a
long period of time; the much lower elasticity of 0.5 allows a
smaller penalty in terms of number of probes over the limit
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Figure 1: Impact of Elastic Budget limits on bound
compliance. Higher elasticity values increase the
probability of going over the specified bound.

and the amount of time required to reduce the aggregate
probing rate.

4.2 Impact of lease duration
The duration of the Experiment Lease directly impacts

how quickly clients are made aware of updated limits from
the coordination service based on the aggregate system
behavior. Now we turn to the impact of lease duration on
bound compliance for three different lease durations and two
different elasticity settings. Figure 2 shows the aggregate
number of probes from participating clients towards the
destination (y-axis), versus the experiment duration time,
plotted on the x-axis. For a given elasticity setting, the
figures show how shorter lease durations translate into
tighter control on the client’s aggregate behavior and hence
into tighter budget limit compliance. For instance, for an
elasticity of 1.00, Fig. 2 shows how a lease duration of
30 seconds ensures the aggregate number of probes from
clients never violates the predetermined limit of 100 probes,
whereas a longer lease duration of 120 seconds causes the
limit to be surpassed by almost 20 percent at its peak.
This is one of the expected trade-offs that must be carefully
managed when designing different experiments.

5. COMPARING ALTERNATIVE SCHEMES
We now compare the efficiency of our solution to two other

alternative coordination schemes: centralized rate-limiting
and individual rate limiting. To compare the three, we look
at three different critical metrics: (a) overhead : how much
control traffic is shared between clients and coordination
servers, which effectively impacts how scalable the solution
is, (b) timeliness: the elapsed time between when the
constraint was violated and when it was detected, and (c)
penalty : how many excess probes were sent to the target
when the aggregate constraint was violated.

Figure 3 compares the performance of Centralized Rate
Limiting (CRL) against that of the Elastic Budget with zero
Elasticity approach, both in terms of bound compliance and
communication overhead. For this comparison we set up
an experiment involving 50 different Dasu clients with an
assigned load of 100 probes each towards a common /24
prefix, and an aggregate maximum limit of 100 probes. In
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Figure 2: Impact of lease duration on bound
compliance. Shorter lease durations translate into
tighter control on the client’s aggregate behavior
and into tighter budget limit compliance.

the case of the CRL approach, clients contact a central
server before launching any measurement that has been
allowed by their local rate limits. Figure 3a shows that, with
this approach, the pre-specified limit of 100 probes is never
exceeded, providing a more accurate bound compliance
than either of the other two alternatives: Elastic Budget
with report intervals of 10 seconds (EB10) and 30 seconds
(EB30). Given that the centralized server is contacted
before clients launch any measurement, the server contains
perfect knowledge of the load on the destination; hence the
strict bound enforcement is expected.

Figure 3b, on the other hand, compares all three ap-
proaches in terms of the aggregate number of communication
interactions between coordination servers and the clients. It
can be seen that while CRL provides no penalty and perfect
timeliness when it comes to bound compliance (Fig. 3a),
it suffers the highest overhead of all three options, over
3x higher than the second closest performing approach.
Although EB10 takes an extra 30 seconds to complete, it
provides similar performance to CRL in terms of penalty and
timeliness, while providing a much reduced communication
overhead. Finally EB30 provides the smallest communica-
tion overhead but this at the expense of higher penalty and
reduced timeliness.

Finally, Figure 4 compares these two approaches against
simple local rate limiting approach (LRL). Given LRL does
not communicate with any coordination servers, we compare
the three only in terms of bound compliance. The figure
shows that LRL exceeds the predefined limit the moment
the combined probing rate of the VPs joining the experiment
exceeds this threshold. While this can be minimized by
conservatively adding a number of VPs that ensure the
threshold can never be exceeded, this will most likely yield
unpredictable results given the volatility of the clients.

This comparison shows that our Elastic Budget approach
can be a scalable solution to the problem of client coordina-
tion for next generation large-scale measurement platforms.

6. RELATED WORK
There exists a rich body of literature on the subject of

scheduling active network monitoring activities. Several
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Figure 3: Performance comparison between Elastic Budget and Centralized Rate Limiting (CRL) approaches
on bound compliance (a) and communication overhead (b).
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Figure 4: Bound compliance performance compar-
ison between three different approaches: Elastic
Budget (blue), Centralized Rate Limiting (purple),
and Local Rate Limiting (red).

of these efforts have concentrated on preventing simulta-
neous scheduling of activities that would interfere with
one another leading to inaccurate measurements. For
instance, a scheduling algorithm based on EDF (Earliest
Deadline First) was proposed in [3] that provides an offline
measurement schedule given a task that potentially involves
multiple measurement nodes running numerous concurrent
measurement tasks.

More closely related are studies on the development of
scheduling algorithms to orchestrate network-wide active
measurements [2, 9]. However, most of these presuppose
that the destinations to be probed and the availability of the
measurement nodes is stable, making them more relevant to
campaigns that perform Internet-wide periodic monitoring
tasks like those of CAIDA’s Ark monitors [1] used to map
the Internet topology3.

More relevant to our work, [7] proposes a scheduling
algorithm for probing measurement targets that respects
a predefined maximum probing rate. This work focuses

3Ark monitors probe IP addresses from every routable IPv4
/24 prefix in cycles of approximately 48 hours.

on completing probing experiments as quickly as possible
while imposing a limit on the probe rate introduced on the
network. However, the implementation of such an algorithm
in our context would require a centralized entity to assign
probes individually to each measurement node one at a
time. Aside from the obvious scalability constraints of
such an approach, measurement nodes are left with little
independence and end up becoming simple measurement
extensions of the centralized server.

7. CONCLUSION
In this paper we evaluated a lease-based scheme in-

troduced in previous work [10, 11] to control the impact
that measurement experiments collectively have on the
underlying network and system resources designed for large-
scale crowdsource measurement platforms. We compared
our solution with two alternative strategies currently imple-
mented by some of the existing crowdsourced measurement
platforms: centralized rate-limiting and individual rate
limiting. Our preliminary results showed that our solution
outperforms these two naive strategies for coordination ac-
cording to at least two different intuitive metrics. We further
found that our scheme efficiently allows the scalable and
effective coordination of measurements among potentially
thousands of hosts while providing individual clients with
enough flexibility to act on their own.
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