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ABSTRACT
While mobile advertisement is the dominant source of revenue
for mobile apps, the usage patterns of mobile users, and thus
their engagement and exposure times, may be in conflict with the
effectiveness of current ads. User engagement with apps can range
from a few seconds to several minutes, depending on a number
of factors such as users’ locations, concurrent activities and goals.
Despite the wide-range of engagement times, the current format of
ad auctions dictates that ads are priced, sold and configured prior
to actual viewing, regardless of the actual ad exposure time.

We argue that the wealth of easy-to-gather contextual informa-
tion on mobile devices is sufficient to allow advertisers to make
better choices by effectively predicting exposure time. We analyze
mobile device usage patterns with a detailed two-week long user
study of 37 users in the US and South Korea. After characterizing
application session times, we use factor analysis to derive a simple
predictive model and show it is able to offer improved accuracy
compared to mean session time over 90% of the time. We make
the case for including predicted ad exposure duration in the price
of mobile advertisements and posit that such information could
significantly impact the effectiveness of mobile ads by giving
publishers the ability to tune campaigns for engagement length, and
enable a more efficient market for ad impressions while lowering
network utilization and device power consumption.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Communications Ap-
plications

General Terms
Experimentation; Measurement; Performance
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1. INTRODUCTION
Advertisement is the dominant source of revenue for mobile

apps, with nearly 90% of available apps offered for free. Mobile
ad sales more than doubled between 2012 and 2013, totaling over
$17.96 billion, and are projected to rise another 75% in 2014
alone [5]. Despite this impressive growth, we posit that the
effectiveness of current ad campaigns may be hindered by the usage
patterns of mobile users, and their engagement times.

Ad campaigns are aimed, among other goals, at improving online
site traffic, creating advertising recall, brand recognition 1 and
brand awareness [4]. Display ad campaigns target exposure, rather
than site traffic or sales, and have traditionally used a pricing
scheme based on the number of impressions delivered (measured
as CPM or cost per thousand impressions). Following a model
inherited from the newspaper and a mostly-static Web era [6],
online display ads treat all impressions the same, independently
of the total exposure time, despite the clear benefits that longer
exposure has on recognition and recall [6, 7].

While user engagement with mobile apps can range widely, from
seconds to several minutes, depending on factors such as users’
locations, concurrent activities (e.g., running, sitting on a train)
and goals (e.g., entertainment, finding direction, work), we argue
that the usage patterns and wealth of easy-to-gather contextual
information on mobile devices is sufficient to effectively predicting
session or exposure time.

In mobile settings, where there is only one app in the foreground,
ad exposure time is bound by application session time. Knowing ei-
ther can benefit all parties in the advertisement ecosystem. Adver-
tisers can use this information to tune campaigns for engagement
length, and bid on the appropriate value of an impression. Session
time information could reward publishers for engaging users, give
ad networks additional freedom to optimize their selections, and
reduce wasted resources on end host devices by eliminating data
for ads which are never shown. Surprisingly considering its many
benefits, we are not aware of any study to attempt to predict the
length of a mobile application session or ad exposure times through
contextual factors.

We make the case for including predicted ad exposure time in
the price of mobile advertisements in current ad exchanges where
impressions are auctioned at their onset. Using a detailed two-
week-long user study, we analyze the mobile device usage behavior
of 37 users (200,000 application sessions) in two mobile markets –
the US and South Korea. We show that application session times
form a long tailed power law distribution, implying a large disparity
in the quality and value of mobile ad sessions. We employ factor

1Recall is the proportion of users who report remembering an
advertising with a minimal prompt, while recognition uses text or
images as probes.
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Figure 1: Diagram of actions recorded by our measurement service.
We are only interested in the time a particular app is both visible
and in the foreground on a user’s device, indicated as Application
Session 1 and Application Session 2 in the Figure.

analysis of device contextual components to determine dominant
influences in device usage and application session time and to
inform the design of our predictive models. We then show that our
prediction model improves accuracy over mean session time over
90% of the time. Our preliminary results show that even a simple
first-approximation model to predict session time can significantly
improve over current practices of ad campaigns.

2. BACKGROUND AND MOTIVATION
There are a number of common billing models for online

advertisement, including Cost Per Click (CPC), Cost Per Mille or
thousand impressions (CPM), and Cost Per Action or Acquisition
(CPA). Independently of the billing model, advertisers typically
purchase ad space by bidding in an auction format.

Bids for impressions are based on the user target profile, which
includes demographics such as gender, age and purchasing power,
and mobile application category. For instance, certain (classes of)
users are particularly coveted due to factors such as their interest
in the advertisers’ subject or their purchasing power. Ads on
more popular websites or applications are also worth more, as are
advertisements in more prominent locations on websites.

To the best of our knowledge no ad auction today takes into
account the (expected) time a user is engaged with an application
(or advertisement), despite the known benefits of longer session
times [6]. A simple approach to incorporate session time would be
to rely on average impression times during bids. As we show in the
following section, considering the high variance and expected long
tail distributions of app session times, assuming average values
would not be particularly useful.

We argue that, unlike their traditional online counterparts, mo-
bile ads are well suited to include accurate temporal information
in their advertisements. The constraints of mobile devices allow
mobile applications to accurately measure the amount of time a
user is exposed to an advertisement. For starters, in mobile setting,
there is only one application that can be in the foreground at a
time. This eliminates the ambiguity of having multiple windows, or
browser tabs open simultaneously. Device usage is bounded by the
time the screen is illuminated, and user interaction can be ensured
by the progression through user identification mechanisms such as
lock-screens. This ensures that a user is actively engaged with the
application within a fine margin. An illustrative example of mobile
device and application use flow is shown in Figure 1.

Knowing the session length of a publisher’s impression can
benefit all parties in the advertising ecosystem, from advertisers
themselves to end users. This information could allow advertisers
to actually pay for the amount of time their ads are shown. In
addition, advertisers can tune their ad campaign media for the
appropriate session length. Similarly, publishers with long user

Figure 2: Two snapshots of AppT illustrating a subset of the
applications monitored, their usage time, and activity, as well as the
observation intervals supported (3, 12 and 24 hours and all-time).
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Figure 3: Distribution of application session times form a power
law distribution in the form of f(x) = 0.499x−1.3014. Average
application session time from our dataset is 258 seconds.

engagement can be accordingly compensated. Knowing the session
length during an ad request allows the ad network the flexibility to
adjust the ordering of ads, and multiplex ad sessions if desired. Last
but not least, knowing session time, allows advertising libraries
to avoid wasting network resources and cap bandwidth by only
downloading the ads which are needed for the allotted time [10].

While there exist many benefits to this type of mobile advertising
model, however, if would require a reinvention of the existing
advertising marketplace. We instead propose that the same benefits
can be enjoyed by predicting the length of a mobile application
session, and using this information in existing online ad auctions.
Our idea leverages the rich context available mobile devices to
build predictive models of application session times. Mobile
devices have access to a wealth of contextual information for an
app usage, including the user’s location, activity, historical usage
patterns, and network performance – context which is unavailable
for desktop users. Given that error would be inevitable in these
predictions, we formalize the cost of prediction error and calculate
the cost of this error in the following section.

3. COLLECTING APP SESSION TIME
To explore the possibility of predicting app session time and

determine the set of contextual factors necessary for this, we
conducted a field study tracking the usage patterns of a set of real
users. To this end, we developed and made available an application
we call AppT – for Application Time. AppT tracks application
session times, defined as the length of time a mobile app is in the
foreground on the user’s device (illustrated previously in Fig. 1).
Figure 2 presents two screenshots of our app.
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Figure 4: Application session times for users under different contexts.

We consider each application to be the foreground application if
it visible to the user (i.e. the screen is illuminated and not behind
a lock screen), and the first ranked foreground application by the
Android operating system. For the duration of screen illumination,
we polled the foreground application from the operating system
every 1.5 seconds. In addition to application session time, AppT
records contextual information from each participant’s device,
including the screen illumination time, network conditions, and
user activity.

For this study, we use AppT collected detailed application usage
time from 35 users, in the United States and South Korea, during a
two week periods in March and April 2014. Our dataset includes
over 200,000 individual application sessions.

3.1 Mobile App Usage
We find application session times to follow a power law dis-

tribution. Figure 3 plots the distribution of application session
time, showing that it forms a power law in the form of f(x) =
0.499x−1.3014. A long tail distribution means a highly skewed
mean session time. For instance, the average session time from our
dataset was 258 seconds, however, this value represents the 90th
percentile of the entire distribution.

4. CONTEXTUAL FACTOR ANALYSIS
We perform, to the best of our knowledge, the first analysis of

contextual factors on mobile application session time. Using the
collected dataset we explore the impact of user activity, network
connectivity and performance, and temporal components on mobile
application session time, and use this analysis to inform the design
of our prediction models. We expect that different (types of)
applications will be use and be impacted differently by the different
factors we explore. Rather than assuming a model per application,
we explore the use of an application name/class in our contextual
analysis.

We want to identify those that are most dominant and informative
for predicting application session time. To this end, we use two
quantitative approaches for comparing factors: analysis of variance
(ANOVA) tests for statistical independence between categories
within a factor (e.g., standing, walking, bicycling, in a vehicle) and
information gain analysis to measure the decrease in entropy per
category.

In our context, high statistical independence between categories
hint at the relative value of that contextual factor as a predictor
of application session time. Similarly, high information gain (i.e.
entropy reduction) indicates greater predictability of application
session time based on the factor’s categories. As an illustrative
example, if one would like to predict the height of an Olympic
athlete, a high statistical independence between each athlete’s
sport (e.g. between basketball and figure skating), of the height

distribution grouped by sport, would indicate that sport, can serve
as a good predictor.

4.1 Contextual Factors
The rich information available on the context of a mobile

device usage has proved valuable to make application launch
prediction [12, 15, 16]. Our hypothesis is that this information can
be further leverage to accurately predict application session time.

A description of the contextual factors we gathered in our study
are given below.
Temporal Components. We expect temporal information, such
as time of day or day of the week, to have an effect on the total
usage and application session length on users’ devices. To view
temporal trends in application session time, we look at how app
session lengths change over time. We analyze how session times
change with regard to the hour of the day and the day of the week.

Figure 4a shows the average session time for our study users
binned by each hour of the day. The figure shows bimodal usage
peaks each day, with application session length peaking at 2 pm
and 12am local time. In addition, we observed larger peaks of high
session times on Saturdays and Sundays than during weekdays.
User Activity. Given the level of integration of mobile devices into
our everyday lives, we also expect user activity to have a dominant
role in determining application session time. For instance, an
exercise tracking application might have a much higher probability
of being used while the user is running or cycling, however,
the total engagement time during each session might be much
shorter during the activity than later, when they are reviewing their
performance.

To this end, AppT records the current user activity as taken
from the DetectedActivity intent built into Android operating sys-
tem. Activities are detected in 20 second granularities, recording
whether the user is walking, standing, in a vehicle, running or
bicycling.

Figure 4b plots session length per activities for all users. In
aggregate, walking and cycling sessions show, respectively, the
shortest and longest median session times with respective values
of 16 and 41 seconds. Interestingly, both stationary and vehicular
sessions are similarly distributed but present significantly different
average session times (262 and 175 seconds).
Network Connectivity Besides the time and current activity of
a user when in an application, one would expect the quality
and performance of the device’s network connection to impact
application session times. For instance, a messaging application
such as WhatsApp would be of little use without any network
connectivity, while poor network conditions tend to render a
mobile web browser virtually unusable. We captured each device’s
current connectivity state (connected or disconnected) along with



the current radio interface (e.g. WIFI, LTE, UTMS, etc) in use
during a connected period.

We found individual network connectivity states to offer very
similar distributions for application session time. Figure 4c plots
the distribution of application session times under different con-
nectivity conditions (e.g. 4G, 3G, WiFi, etc). The figure shows
almost identical curves for all connectivity states with the exception
of LTE, which shows shorter application session than each other
network state.
Mobile Application Given the wide range of applications available
and the different intended usage modes, we expect that either the
application or its type to be key for predicting session time pre-
diction. For our analysis, we use the application’s package name,
which uniquely identifies it within the Android ecosystem. We
focus our study on the top ten most commonly used applications
for users. We found this subset to be sufficient to account for most
of the device utilization – indeed, we found the top 5 applications
alone already account for over 80% of device usage, on average.

Application sessions also differ based on the category of appli-
cation. We categorized each application package into one of 19
different categories (e.g. messaging, game, video). We found the
category of mobile application to play a significant determinant
of average session time. Average session times for each category
are plotted in descending order in Figure 4d. The figure shows,
surprisingly, that common phone utilities such as weather/clock
had the highest average session times of nearly 3 minutes. Other
apps such as messaging and phone contacts had some of the lowest
average session times.

4.2 Analysis of Variance (ANOVA)
ANOVA tests are used to determine independence between

subpopulations of a population (categories of a factor, in our
context). ANOVA represents independence between categories by
looking at the overlap between confidence intervals of each class.
The formula shown by Equation 1 calculates the F ratio, which is
then plugged into the standard F -distribution to obtain p-values for
significance [8].

F =
MSTreatments

MSError
=

∑
nj(x̄j−x̄)2

k−1∑
(nj−1)σ2

j

n−k

(1)

We ran ANOVA tests, per user, for each factor described
previously in Section 4.1. The significance levels are represented
as p-values for each factor and shown in Figure 5. Typically p-
values less than 0.05 (dash vertical line) indicate high levels of
subpopulation independence, while p-values less than 0.1 (solid
vertical line) indicate weak independence [8].

We use these results to determine which factors should be
included within our prediction model. Those with high group
independence (low p-values) mean that grouping by that category
produces statistically significant differences in each subpopulation,
indicating a factor will be useful for prediction.

Our results (Fig. 5) show hour of the day to have the highest
group independence, followed by mobile application, user activity
and day of week. Indeed, time of day shows high levels of
group independence (p-values < 0.05) for over 90% of users.
Mobile application showed similar independence also for over 90%
of users. User activity obtained the next highest , with weak
independence for nearly half of the user population, and radio
type seeing independence in nearly 30% of the user population.
Connectivity was the least independent of all factors, showing
strong independence in only 10% of the user population and weak
independence in only 20% of users. Unlike time of day (hour),
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Figure 5: P-values for users for different contextual groups.
P-values < 0.05 (dotted line) indicate statistical significant
independence, while p-values < 0.1 (solid line) indicate weak
independence.

each of these last factors represent minor indicators of application
session time according to statistical independence. We supplement
these insights with information gain analysis in the next section.

4.3 Information Gain Analysis
To further characterize contextual factor influence on application

time, we calculate the relative information gain of each factor by
measuring the decrease in entropy each brings to the system, or
more plainly, the increase in predictability of session times each
category of contextual factor gives. The information gain of each
contextual factor can be used to guide the design of predictive
models.

The entropy of a random variable Y is given as H(Y ) =∑
i P [Y = yi]log

1
P [Y=yi]

, where P [Y = yi] is the probability
that Y = yi. The information gain G(X) of a particular factor
F with states f ∈ F is calculated as G(Y, F ) = H(Y ) −∑
f∈F

|Yf |
|Y | H(Yf ). It is the difference between the total entropy

of the original system, and the sum of the entropy of each factor
grouping. For comparison purposes, we calculate the relative
information gain, which normalized the difference in entropy by
dividing the result by the total entropy of the system, H(Y ).

Figure 6 plots the cumulative distribution of information gain
observed by each user in our study for the 5 contextual factors.
The figure shows, again, that the temporal components (weekday
and hour) along with application name (package name) provide the
highest amounts of information gain to the system. Radio type
offered moderate information gains, while user activity gave the
least by far.

Interestingly, user activity offers the lowest information gain
even though our ANOVA analysis (§ 4.2) showed there exists high
level of independence between activity subpopulations. This is
due to the fact that information gain is not normalized against
subpopulation size like ANOVA, and speaks to the need for
multiple techniques when designing a prediction model. In the
case of user activity, the number of application sessions classified
as stationary were at least an order of magnitude larger than any of
the other activities. Therefore, the entropy of stationary sessions
(which is weighted by |Yf |

|Y | ) is very close to the total entropy of the
system.

5. MOBILE APP PREDICTION
We now outline a procedure for modelling and predicting appli-

cation session times. We first formalize the bounds of prediction
error by calculating the maximum error allowable to still offer
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Figure 6: Relative information gain for contextual factors for
application session time. Application name, and temporal
components have large information gains for study users.

more accurate information than the average session time. Using
this model, we compute the potential cost of inaccurate prediction
on advertisers and publishers before presenting preliminary work
toward session time prediction.

5.1 Prediction Error Bounds
Since ad sales are closed before the user has even begun viewing

an ad, it is impossible to know the actual session length at bidding
time, making it necessary to use an estimate. We formalize
the bounds of prediction error by calculating the maximum error
allowable to still offer more accurate information than the average
session time, t̄. With prediction, there always exists some error, et,
between the predicted session time, tp, and the actual session time,
t.

We define the loss due to prediction error as the difference in
price between the predicted session time, and the price of the actual
session time, |P (tp)− P (t)|. This cost due to any prediction error
can only be determined by knowing the shape of the advertiser
demand function, P (t). This is due to our definition of loss being
based on the price differential between actual and predicted session
times, therefore the shape of the price (demand) curve is integral to
the overall loss. We compare this prediction loss to the difference in
price between that of mean session time and the price of the actual
session time, |P (t̄)− P (t)|.

We look at the results from our estimation of advertiser demand
curves using linear, polynomial and logarithmic growth functions.
We look for conditions where the loss from prediction is less than
the loss from the current model.

|P (t̄)− P (t)| > |P (tp)− P (t)| (2)

Using linear demand where P (t) = Ct + b, we can reduce
Equation 2 to |t̄−t| > |tp−t|, or more simply, when the error from
prediction is less than the distance to the session time mean. Using
a polynomial demand where P (t) = Cta + b and a > 1, we can
reduce Equation 2 to |t̄a − ta| > |tap − ta|, the value of session
time here depends on the magnitude of the demand exponent,
along with prediction accuracy. Using logarithmic demand where
P (t) = Clog(t) + b, Equation 2 reduces to |log( t̄

t
)| > |log(

tp
t

)|.
Using the distribution of application session times collected from

our user study (§ 3), we simulate the maximum value of prediction
error, et which can be tolerated for our prediction model using the
three possible demand curves described above. Figure 7 shows
the maximum prediction error for Equation 2 to hold using all
application session times taken from our experiments. The Figure
shows the high similarity in allowable prediction error for the
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Figure 7: Maximum prediction error (et = |tp − t|) tolerable for
session prediction to improve against the current model. While
each demand model differs on its tail behavior, errors for each
demand model are very similar, and heavily dependent on t̄, which
in our study is 258.9 seconds.

different demand curves, diverging only above the 90th percentile
among all curves. This similarity shows that for the vast majority
of cases, the advertiser demand function has a minimal effect on
the bounds of prediction error.

5.2 A Naïve Prediction Model
Using the data collected from our experiments (§ 3), and our

contextual factor analysis (§ 4) we constructed and evaluated a
naïve prediction model for mobile application sessions. Due to the
complex interactions between contextual factors and app session
time, we chose to use a decision tree classifier to predict session
times over other classifiers and regression models. Each class is
generated taking an equal percentile from the overall training set
distribution. Using a classifier over potential regression models
reduces overall accuracy since the predicted value is the average
value taken for a given classification; however, we found this to be
more accurate when compared to regression models such as linear
or decision-tree regression.

We analyzed the accuracy of our predictive models through the
classification accuracy, the percentage of session times which are
correctly placed in the right class. To evaluate our prediction
model, we split our dataset into a training and validation set. Since
our dataset encompassed a two week period, we use the first week
of data for model training and the second week as a validation set
for our models. This allows us to compare the success of several
different classifier models and class sizes. We found that decision
trees provided the most accurate predictor of mobile application
session times, when compared with other common classifiers such
as support vector classifiers (SVCs) and Naive Bayes classifiers.
Unsurprisingly we found that as we increased the number of classes
we see classifier accuracy decrease substantially.

Application session times are continuous values, and the classi-
fier accuracy does not capture the absolute error obtained by the
prediction. For instance, if a session was classified incorrectly,
but still placed in an adjacent class, the prediction might still be
beneficial. We therefore also measure the absolute prediction error
of our predictive model, defined as the difference between the
predicted session time and the actual session time from our testing
set. Since our predictions are based on classes, the predicted time is
taken to be the average session time in each class from the training
set. Figure 8 shows this prediction error for our prediction model,
the mean error, and a random distribution sampling. Our classifier
outperforms mean error in over 90% of cases.
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Figure 8: Prediction error for simple decision tree classifier and
10 classes, compared to the mean error. Our prediction model
outperforms mean error in over 90% of cases.

6. RELATED WORK
Several recent efforts have looked at the impact of device

context on mobile device usage patterns, and understanding user
engagement and application usage for individuals. Research on
user engagement has focused on determining dominant factors for
user viewing or for developing predictive models for engagement
in online videos (e.g., [1, 3]) .

Other projects have explored application usage and prediction
on mobile devices (e.g., [2, 12, 13, 15, 16]) considering contextual
factors such as time of day and location to predict, for instance, the
next application to be launched. Understanding the effect of context
on device usage has important implications on system performance
enhancements, device preloading and prefetching, and application
design.

Our work is complementary to these efforts. We approach the
problem of usage prediction not from the individual applications,
but from the level of the entire device, and bringing in additional
contextual information such as user activity (e.g., walking, stand-
ing), network state, total phone session and performance. By
focusing on device engagement, we are able to understand usage
patterns across classes of applications and over short individual
application sessions. Ourgoal is to better understand the effect that
each of these contextual elements has on device and application
usage, and, use this information to reliably predict session times
for devices and applications.

Due to their large role in financing mobile applications, mo-
bile advertisements have recently been studied in the contexts of
fraud [9], contextual effectiveness [11], and network and power
usage on mobile devices [14]. Closest to our work is by Mohan
et al. which studied the efficacy of prefetching mobile advertise-
ments [10]. Part of their analysis was to look at the entropy of
application session lengths from a large historical sample, finding
that prediction is indeed feasible. Our work extends their initial
analysis, taking into account a large variety of user contexts, and
implementing a first attempt at mobile session prediction from this
context.

7. CONCLUSION AND FUTURE WORK
The usage patterns of mobile users, and thus their engagement

times, may be in conflict with the effectiveness of current ads.
While users engagement with mobile apps can range from a few
seconds to several minutes, the current format of ad auctions
dictates that ads are priced, sold and configured prior to actual
viewing, regardless of the actual exposure time. We argue that
the wealth of easy-to-gather contextual information on mobile

devices is sufficient to allow advertisers to make better choices
by effectively predicting exposure time. Building on a two-week-
long user study in two markets we analyzed mobile device usage
patters. We used factor analysis to derive a simple predictive
model and show that is able offer improved accuracy compared
to mean session time over 90% of the time. We made the case
for including predicted ad exposure time in the price of mobile
advertisements and posit that such information could significantly
impact the effectiveness of mobile advertisement, giving publishers
the ability to tune campaigns for engagement length and enabling a
more efficient market for ad impressions, select appropriate media
for an ad impression and lowering the cost to users including
network utilization and device power. In ongoing work, we are
exploring better prediction models and evaluating the benefits of
estimated session times in other contexts, including media selection
and network usage.
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