
Fabián E. Bustamante, 2007

Exceptional Control Flow Part I

Today
! Exceptions
! Process context switches
! Creating and destroying processes

Next time
! Signals, non-local jumps, …

2

Control flow

! Computers do only one thing
–  From startup to shutdown, a CPU simply reads and executes

(interprets) a sequence of instructions, one at a time.
–  This sequence is the system’s physical control flow (or flow of

control).

<startup>!
inst1!
inst2!
inst3!

…!
instn!

<shutdown>!

Physical control flow!

Time!

3

Altering the control flow

! Up to now: two mechanisms for changing control flow
–  Jumps and branches
–  Call and return using the stack discipline
–  Both react to changes in program state

! Insufficient for a useful system
–  Difficult for the CPU to react to changes in system state

•  Data arrives from a disk or a network adapter
•  Instruction divides by zero
•  User hits ctl-c at the keyboard
•  System timer expires

! System needs mechanisms for “exceptional control
flow” (ECF)

4

Exceptional control flow

Mechanisms for exceptional control flow exists at all
levels of a computer system

! Low level mechanism
–  Exceptions

•  Change in control flow in response to a system event (i.e.,
change in system state)

–  Combination of hardware and OS software

! Higher level mechanisms
–  Process context switch
–  Signals
–  Nonlocal jumps (setjmp/longjmp)
–  Implemented by either:

•  OS software (context switch and signals)
•  C language runtime library: nonlocal jumps

5

Exceptions

! Exception – a transfer of control to the OS in response
to some event (i.e., change in processor state)

! E.g. page fault, arithmetic overflow, I/O done, …

User Process OS

exception
exception processing
by exception handler

exception
return (optional)

event current!
next!

6

Interrupt vectors

! Each type of event
has a unique
exception number k

! Index into jump table
(a.k.a., interrupt
vector)

! Jump table entry k
points to a function
(exception handler)

! Handler k is called
each time exception k
occurs

interrupt
vector

0
1
2 ...

n-1

code for
exception handler 0

code for
exception handler 1

code for
exception handler 2

code for
exception handler n-1

...

Exception !
numbers!

7

Classes of exceptions

Class Cause (A)Sync Return behavior

Interrupt Signal from I/O device Async Always return to next
instruction

Trap Intentional exception Sync Always return to next
instruction

Fault Potentially recoverable error Sync Might return to current
instruction

Abort Non-recoverable error Sync Never returns

8

Asynchronous exceptions (Interrupts)

! Caused by events external to the processor
–  Indicated by setting the processor’s interrupt pin
–  Handler returns to next instruction.

! Examples:
–  I/O interrupts

•  Hitting ctl-c at the keyboard
•  Arrival of a packet from a network
•  Arrival of a data sector from a disk

–  Hard reset interrupt
•  Hitting the reset button

–  Soft reset interrupt
•  Hitting ctl-alt-delete on a PC

9

Synchronous exceptions

! Caused by events that occur as a result of executing
an instruction:

Class Cause Examples Return behavior
Trap Intentional

exception
System calls, breakpoint
traps

Always return to next
instruction

Fault Potentially
recoverable error

Page fault (recoverable),
protection faults
(unrecoverable)

Might return to current
instruction

Abort Non-recoverable
error

Parity error, machine check Never returns

10

Trap example

! Opening a File
–  User calls open(filename, options)

•  Function open executes system call instruction int
–  OS must find or create file, get it ready for reading or writing
–  Returns integer file descriptor

User Process OS

exception

Open file
 return

int
pop

0804d070 <__libc_open>:
 . . .
 804d082: cd 80 int $0x80
 804d084: 5b pop %ebx
 . . .

System call
code

11

Fault example #1

! Memory reference
–  User writes to memory location
–  That portion (page) of user’s memory

is currently on disk

–  Page handler must load page into physical memory
–  Returns to faulting instruction
–  Successful on second try

User Process OS

page fault
Create page and load
into memory return

event movl

int a[1000];
main ()
{
 a[500] = 13;
}

 80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

12

Fault example #2

! Memory reference
–  User writes to memory location
–  Address is not valid

–  Page handler detects invalid address
–  Sends SIGSEG signal to user process
–  User process exits with “segmentation fault”

int a[1000];
main ()
{
 a[5000] = 13;
}

 80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User Process OS

page fault

Detect invalid address
event movl

Signal process

13

Processes

! A process is an instance of a running program
–  One of the most profound ideas in computer science
–  Not the same as “program” or “processor”
–  Exceptions are key to implementing processes

! Process provides each program with two key
abstractions:
–  Logical control flow

•  Each program seems to have exclusive use of the CPU
–  Private address space

•  Each program seems to have exclusive use of main memory

! How are these Illusions maintained?
–  Process executions interleaved (multitasking)
–  Address spaces managed by virtual memory system

14

Logical control flows

Time!

Process A! Process B! Process C!

Each process has its own logical control flow!

15

Concurrent processes

! Two processes run concurrently (are concurrent) if
their flows overlap in time

! Otherwise, they are sequential
! Examples:

–  Concurrent: A & B, A & C
–  Sequential: B & C

Time!

Process A! Process B! Process C!

16

User view of concurrent processes

! Control flows for concurrent processes are physically
disjoint in time

! However, we can think of concurrent processes as
running in parallel (this is concurrency)

! Independently of how many processors/cores we have

Time!

Process A! Process B! Process C!

17

Context switching

! Processes are managed by a shared chunk of OS
code called the kernel
–  Not a separate process, but runs as part of user process

! Kernel maintains a context for each process – state
the kernel needs to restart a process
–  Value of general purpose and floating point registers
–  Program counter
–  User’s stack
–  Status registers
–  Page table
–  ….

18

Context switching

! Control flow passes from one process to another via a
context switch - a higher-level form of exceptional
control flow
–  While the kernel is executing a system call
–  As a result of an interrupt (e.g. timer)

Process A!
code!

Process B!
code!

user code!

kernel code!

user code!

kernel code!

user code!

Time!
context switch!

context switch!

19

Process control

! Every processes has a unique nonzero process ID

! Through its life, it moves among various states (in Unix run ps)

–  New – being created
–  Ready – waiting to get the processor
–  Running – being executed (how many at once?)
–  Waiting – waiting for some event to occur
–  Terminated – finished executing

new

ready

admitted interrupt

running

dispatched

terminated exit

waiting
I/O or

event wait

I/O or event
completion

pid_t getpid(void); /* process PID */
pid_t getppid(void); /* parent PID */

20

Process control

! A process terminates because
–  It received a signal whose default action is to terminate it
–  It returned from the main routine or
–  It called exit

•  atexit() registers functions to be executed upon exit

 void exit(int status);
int atexit(void (*function)(void));

#include <stdlib.h>
#include <stdio.h>

void cleanup(void) {
 printf("cleaning up\n");
}

int main()
{
 atexit(cleanup);
 printf(“Making a mess and ...\n")
 exit(0);
}

unix$./atExit
Making a mess and ...
cleaning up

21

Process control

! A process (parent) can create another one (child) by
calling fork

–  Child is nearly identical to parent process

•  User-level virtual address space, copies of open file descriptors
•  Different PID

–  Fork returns twice, for parent and child
•  Returns 0 to the child process
•  Returns child’s pid to

the parent process

pid_t fork(void);

int main()
{
 pid_t pid;
 int x = 1;

 pid = fork();
 if (pid == 0) { /* child */
 ...
 }
 /* parent */
 ...
}

22

Fork example

! Some key points
–  Parent and child both run same code, concurrently

•  Distinguish parent from child by return value from fork
–  Start with same state, but each has private copy

•  Including shared output file descriptor
•  Relative ordering of their print statements undefined

int main()
{
 pid_t pid;
 int x = 1;

 pid = fork();
 if (pid == 0) { /* child */
 printf("Child x = %d\n", ++x);
 } else { /* parent */
 printf("Parent x = %d\n", --x);
 }
 exit(0);
}

usenix$./fork1
Parent x = 0
Child x = 2

23

Fork example #2

! Key points
–  Both parent and child can continue forking

void fork2()
{
 printf("L0\n");
 fork();
 printf("L1\n");
 fork();
 printf("Bye\n");
}

L0 L1

L1

Bye

Bye

Bye

Bye

24

Fork example #3

! Key points
–  Both parent and child can continue forking

void fork3()
{
 printf("L0\n");
 fork();
 printf("L1\n");
 fork();
 printf("L2\n");
 fork();
 printf("Bye\n");
}

L1 L2

L2

Bye

Bye

Bye

Bye

L1 L2

L2

Bye

Bye

Bye

Bye

L0

25

Fork example #4

! Key points
–  Both parent and child can continue forking

void fork4()
{
 printf("L0\n");
 if (fork() != 0) {

 printf("L1\n");
 if (fork() != 0) {
 printf("L2\n");
 fork();
 }

 }
 printf("Bye\n");
}

L0 L1

Bye

L2

Bye

Bye

Bye

26

Fork example #5

! Key points
–  Both parent and child can continue forking

void fork5()
{
 printf("L0\n");
 if (fork() == 0) {

 printf("L1\n");
 if (fork() == 0) {
 printf("L2\n");
 fork();
 }

 }
 printf("Bye\n");
}

L0 Bye

L1

Bye

Bye

Bye

L2

27

Zombies

! Idea
–  When process terminates, still consumes system resources

•  Various tables maintained by OS
–  Called a “zombie”

•  Living corpse, half alive and half dead

! Reaping
–  Performed by parent on terminated child
–  Parent is given exit status information
–  Kernel discards process

! What if parent doesn’t reap?
–  If parent terminates without reaping a child, child will be

reaped by init process
–  Only need explicit reaping for long-running processes

•  E.g., shells and servers

28

linux> ./forks 7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6639 ttyp9 00:00:03 forks
 6640 ttyp9 00:00:00 forks <defunct>
 6641 ttyp9 00:00:00 ps
linux> kill 6639
[1] Terminated
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6642 ttyp9 00:00:00 ps

Zombie - Example

! ps shows child process as “defunct”
! Killing parent allows child to be reaped

void fork7()
{
 if (fork() == 0) {

 /* Child */
 printf("Terminating Child, PID = %d\n",
 getpid());
 exit(0);

 } else {
 printf("Running Parent, PID = %d\n",
 getpid());
 while (1)
 ; /* Infinite loop */

 }
}

29

linux> ./forks 8
Terminating Parent, PID = 6675
Running Child, PID = 6676
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6676 ttyp9 00:00:06 forks
 6677 ttyp9 00:00:00 ps
linux> kill 6676
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6678 ttyp9 00:00:00 ps

Nonterminating child example

! Child process still active even
though parent has terminated

! Must kill explicitly, or else will
keep running indefinitely

void fork8()
{
 if (fork() == 0) {

 /* Child */
 printf("Running Child, PID = %d\n",
 getpid());
 while (1)
 ; /* Infinite loop */

 } else {
 printf("Terminating Parent, PID = %d\n",
 getpid());
 exit(0);

 }
}

30

Synchronizing with children

! int wait(int *child_status)
–  Suspends current process until one of its children terminates
–  Return value is the pid of the child process that terminated
–  If child_status != NULL, then the object it points to will be

set to a status indicating why the child process terminated

void fork9() {
 int child_status;

 if (fork() == 0) {
 printf("HC: hello from child\n");
 }
 else {
 printf("HP: hello from parent\n");
 wait(&child_status);
 printf("CT: child has terminated\n");
 }
 printf("Bye\n");
 exit();
}

HP

HC Bye

CT Bye

31

wait Example

! If multiple children completed, pick in arbitrary order
! Can use macros WIFEXITED and WEXITSTATUS to

get information about exit status

void fork10()
{
 pid_t pid[N];
 int i;
 int child_status;
 for (i = 0; i < N; i++)

 if ((pid[i] = fork()) == 0)
 exit(100+i); /* Child */

 for (i = 0; i < N; i++) { /*FIXME – whichever ends first*/
 pid_t wpid = wait(&child_status);
 if (WIFEXITED(child_status))
 printf("Child %d terminated with exit status %d\n",
 wpid, WEXITSTATUS(child_status));
 else
 printf("Child %d terminate abnormally\n", wpid);

 }
}

32

waitpid

! waitpid(pid, &status, options)
–  Can wait for specific process
–  Various options

void fork11()
{
 pid_t pid[N];
 int i;
 int child_status;
 for (i = 0; i < N; i++)

 if ((pid[i] = fork()) == 0)
 exit(100+i); /* Child */

 for (i = 0; i < N; i++) {
 pid_t wpid = waitpid(pid[i], &child_status, 0);
 if (WIFEXITED(child_status))
 printf("Child %d terminated with exit status %d\n",
 wpid, WEXITSTATUS(child_status));
 else
 printf("Child %d terminated abnormally\n", wpid);

 }

33

wait/waitpid example outputs

Child 3565 terminated with exit status 103
Child 3564 terminated with exit status 102
Child 3563 terminated with exit status 101
Child 3562 terminated with exit status 100
Child 3566 terminated with exit status 104

Child 3568 terminated with exit status 100
Child 3569 terminated with exit status 101
Child 3570 terminated with exit status 102
Child 3571 terminated with exit status 103
Child 3572 terminated with exit status 104

Using wait (fork10)!

Using waitpid (fork11)!

Running new programs

! Load & run a new program in current process context

–  Runs executable object file filename
–  With argument list argv
–  And environment variable list envp

34

#include <unistd.h>

int execve(const char *filename, const char *argv[],
 const char *envp[]);

argv argv[0]

argv[1]

...

argv[argc-1]

NULL

“./myecho”

“arg1”

“/usr/include”
Organization of
an argument list

35

Summarizing
! Exceptions

–  Events that require nonstandard control flow
–  Generated externally (interrupts) or internally (traps and faults)

! Processes
–  At any given time, system has multiple active processes
–  Only one can execute at a time, though
–  Each process appears to have total control of processor + private

memory space
! Spawning processes

–  Call to fork: one call, two returns
! Terminating processes

–  Call exit: one call, no return
! Reaping processes

–  Call wait or waitpid
! Replacing program executed by process

–  Call execl (or variant): one call, (normally) no return

