Fabian E. Bustamante, 2007

Virtual Memory

Today

e Motivations for VM

e Address translation

e Accelerating translation with TLBs

Next time
e Linking

A system with physical addressing

» Main memory - An array of M contiguous byte-sized
cells, each with a unique physical address

» Physical addressing

— Most natural way to access it — Addresses generated by the
CPU correspond to bytes in it

— Used in simple systems like early PCs and embedded
microcontrollers (e.g. cars and elevators)

CPU

Physical (1)5
address 2j
(PA) 1
> 3

4 4:

5:

6:

7:

8:

M -1:

Main memory

Data word

A system with virtual addressing

» Modern processors use virtual addresses

» CPU generates virtual address and address translation
Is done by dedicated hardware (memory management
unit) via OS-managed lookup table

CPU chip Main memory
e . 0:
! Virtual Address | Physical 1:
address translation : address 2
VA PA .
cPU (VA) | MMU (PA) R 2:

_ 4100 4 :. |

-- 6:
7l
M-1:

Data word

Motivations for virtual memory

» Use physical DRAM as a cache for the disk
— Address space of a process can exceed physical memory
— Sum of address spaces of multiple processes can exceed
physical memory
e Simplify memory management
— Multiple processes resident in main memory
« Each process with its own address space

— Only “active” code and data is actually in memory
» Allocate more memory to process as needed

e Provide protection
— One process can't interfere with another
« Because they operate in different address spaces

— User process cannot access privileged information
» Different sections of address spaces have different permissions.

Levels in memory hierarchy

size:
speed:
$/Mbyte:
line size:

cache virtual memory
C
CPU 8B || 328 Memory | -4KB Disks
regs h
e
Register Cache Memory Disk Memory
32B 32KB-4MB 1024 MB 100 GB
1ns 2ns 30 ns 8 ms
$125/MB $0.20/MB $0.001/MB
8B 32B 4 KB

10x slower 100,000x slower

larger, slower, cheaper

Motivation: DRAM a “cache” for disk

» Full address space is quite large:
— 32-bit addresses: ~4 Gigabytes (4 billion) bytes
— 64-bit addresses: ~16 Exabytes (16 quintillion) bytes
» Disk storage is ~100X cheaper than DRAM storage
— 2TB of DRAM: ~ $10,000
— 2TB GB of disk: ~$100

» To access large amounts of data in a cost-effective
manner, the bulk of the data must be stored on disk

2TB: ~$100

16GB: ~100
8 MB: ~$100

SRAM |+ * DRAM ‘—’

DRAM vs. SRAM as a “cache”

*» DRAM vs. disk is more extreme than SRAM vs. DRAM

— Access latencies:
« DRAM ~10X slower than SRAM
* Disk ~100,000X slower than DRAM

— Importance of exploiting spatial locality:
 First byte is ~100,000X slower than successive bytes on disk
— vs. ~4X improvement for page-mode vs. regular accesses to DRAM
— Bottom line:

* Design decisions made for DRAM caches driven by enormous
cost of misses

Virtual and physical pages

» Data on disk is partitioned into fixed sized blocks —
virtual pages

» Physical memory into blocks of equal size — physical
pages or page frames

» At any point, VM pages are partitioned into three sets

— Unallocated

— Allocated
— Cached vp Virtual memory

Physical

Unallocated memory

Cached

Uncached VP1

Unallocated

0
1

2 \

3

4 Cached VP6
5 Uncached

6 Cached >< VP4
7

Uncached

Impact of properties on design

» [f DRAM were to be organized similar to an SRAM
cache, how would we set the following design
parameters?

— Line size”? Large, since disks are better at xferring large blocks
— Associativity? High, to minimize miss rate

— Write through/write back? Write back, can’t afford to perform
small writes to disk

» What would the impact of these choices be on:
— Miss rate: Extremely low. << 1%
— Hit time: Must match cache/DRAM performance
— Miss latency: Very high. ~20ms
— Tag storage overhead: Low, relative to block size

Locating an object in a “"Cache”

*» SRAM Cache

— Tag stored with cache line

— Maps from cache block to memory blocks
« From cached to uncached form
« Save a few bits by only storing tag

— No tag for block not in cache

— Hardware retrieves information
« Can quickly match against multiple tags

“Cache”
Tag Data
Object Name 0/ b 243
X =X? —< T: X 17 b E—
N-1: J 105

Locating an object in "Cache”

*» DRAM Cache

— Each allocated page of virtual memory has entry in page table
— Mapping from virtual pages to physical pages

Page Table
Location Data Physical memory
ocato (DRAM “Cache”)
0: 0 0: 243
1: On Disk 1: 17
n vis \-\ /
/\/ 2:
7 1 [N8 105
AT
\) §
AN ' VP 1 Virtual memory
\ (disk)
Y vP2
WL_VP3
\
VP 7

Locating an object in "Cache”

» Mapping from virtual pages to physical pages
» Page table entry even if page not in memory

— Specifies disk address
— Only way to indicate where to find page
— OS retrieves information

Page Table “Cache”
Virtual address Location Data
Object Name 0: 0 0: 243
X 1: On Disk 1: 17
7. 1 3: 105

Page faults (like “cache misses”)

» What if an object is on disk rather than in memory?
— Page table entry indicates virtual address not in memory

— OS exception handler invoked to move data from disk into
memory
« Current process suspends, others can resume
» OS has full control over placement, etc.

Before fault After fault
Memory Memory
Page Table Page Table
Virtual i
Addresses Fc,lh ,g;csegs . Virtual Physical

Addresses

ddresses| ..

CPU

.
. i
"""""

CPU e

Servicing a page fault

* Processor signals controller (1) Initiate Block Read
— Reac;l block pf length P Processor
starting at disk address X and Reg 3) Read
store starting at memory E)) ca
one
address Y
Cache

* Read occurs
— Direct Memory Access (DMA)
— Under control of I/O controller

» |/ O controller signals
completion
— Interrupt processor

— OS resumes suspended
process

(2) DMA

How does anything get done?! Locality to the rescue!

Motivations for virtual memory

¢ Use physical DRAM as a cache for the disk
— Address space of a process can exceed physical memory size
— Sum of address spaces of multiple processes can exceed
physical memory
* Simplify memory management
— Multiple processes resident in main memory
« Each process with its own address space

— Only “active” code and data is actually in memory
« Allocate more memory to process as needed

* Provide protection
— One process can't interfere with another
« Because they operate in different address spaces

— User process cannot access privileged information
 Different sections of address spaces have different permissions.

Motivation #2: Memory management

» Multiple processes can reside in physical memory.

*» How do we resolve address conflicts?

— what if two processes access something at the same
address?

memory invisible to

kernel virtual memory user code

stack

v
t

Memory mapped region
forshared libraries

%esp —

Linux/x86 process

Memory image

|

[runtime heap (via malloc)

[the “brk” ptr

uninitialized data (.bss)
initialized data (.data)
program text (.text)
forbidden

Solution: Separate virtual addr. spaces

» Each process has its own virtual address space
— OS controls how virtual pages are assigned to physical mem.

0

Virtual 0 Address Translation Physical
Address VP 1 > PP2 Address
Space for VP2 Space

Process 1: N (DRAM)

(e.g., read/only

_ i/ library code)
Virtual 0

VP 1

Address VP 2 » PP10
Space for

Process 2: M-1

N-1

Motivations for virtual memory

¢ Use physical DRAM as a cache for the disk
— Address space of a process can exceed physical memory size
— Sum of address spaces of multiple processes can exceed
physical memory
e Simplify memory management
— Multiple processes resident in main memory
» Each process with its own address space

— Only “active” code and data is actually in memory
» Allocate more memory to process as needed

* Provide protection
— One process can't interfere with another
« Because they operate in different address spaces

— User process cannot access privileged information
 Different sections of address spaces have different permissions

Motivation #3: Protection

» Page table entry contains access rights information
— HW enforces this protection (trap into OS if violation occurs)

Must be running

in kernel (sup) Page tables with permission bits
mode SUP READ WRITE Address Physical memory
VP O: | No Yes No PP 6 .
Processi: VP 1: | No Yes Yes PP 4 ‘\\\ PP O
VP 2: | Yes Yes Yes PP 2 [— PP 2
. e PP 4
S
) 4 PP 6
SUP READ WRITE Address
VP 0: | No Yes No PP 9 ° > PP 9
Processj: VP 1: | Yes Yes Yes PP 6 o |
VP2 [No |[Yes |Yes |PP11 o—f— =——FFT

VM address translation

» First some terminology ...

» Virtual Address Space
- V={0,1,...,N-1} (N =2") N Number of addresses in

. irtual add
» Physical Address Space viniat acdaress space

- P={0,1,..., M=1} (M =2m) M Number of addresses in
_ M<N physical address space

* Address Translation
— MAP: V- P U {2}
— For virtual address a:

« MAP(a) = a’ if data at virtual address a is at physical address a’
in P
« MAP(a) = U if data at virtual address a is not in physical memory
— Either invalid or stored on disk

Page tables

Virtual Page Memory resident
Number page table
(physical page]
valid or disk address) Physical Memory

1

v

AN

1
0
1
1
1
0
1
0
1

\
AN Disk Storage
N \\ (swap file or
NN regular file system file)
N
N \\ \J
N
N
.\\\.I
.

VM address translation: Hit

Processor

Hardware Mai
Addr Trans " ain
a Mechanism > Viemory

e | Ny

virtual address part of the physical address
on-chip
memory
mgmt unit
(MMU)

\ 4

VM address translation: Miss

page fault
/ fault
Processor handler
) — '
R A':ﬂfl -‘;-\:,:::s — Main Secondary
a Mechanism > Memory L memory
/ ’ " \ \

virtual address part rc‘)f the physical address %?sﬁfgfnosr;grs
&"e':‘ olfy (only if miss)
mgmt unit

(MMU)

VM address translation

» Parameters /
Elem.

— P = 2P = page size (bytes). L
— N = 2" = Virtual address limit S "
— M = 2™ = Physical address limit

Page
n—1 p p-1 0
virtual page number page offset virtual address
v
address translation >
m—1 v p p-1 v 0
physical page number page offset physical address

Page offset bits don’t change as a result of translation

Address translation via page table

page table base register

VPN acts
as
table inde

n-1

virtual address
p p-1

virtual page number (VPN) page offset

valid access physical page number (PPNp

v

if valid=0

then page -
not in memory

m-1

’ p p-1 v

physical page number (PPN)| page offset

physical address

Page table operation

» Translation
— Separate (set of) page table(s) per process
— VPN forms index into page table (points to a page table entry)

page table base register virtual address
n-1 p_p-i 0
VPN acts as virtual page number (VPN) page offset
table index

valid access physical page number (PPN)

Page table
address for
process >
Page table

if valid=0 <

then page

not in memory m-1 v p p-1 v 0

physical page number (PPN) page offset

physical address

Page table operation

» Computing physical address
— Page Table Entry (PTE) provides info about page

- if (valid bit

= 1) then the page is in memory.

— Use physical page number (PPN) to construct address
« if (valid bit = 0) then the page is on disk - page fault

page table base register

VPN acts as
table index

virtual address
n—1 p p-1

virtual page number (VPN)

page offset

valid access physical page number

(PPN)

Page table
if valid=0 «—
then page
not in memory m-1 v p p-1 v

physical page number (PPN)

page offset

physical address

Page table operation

» Checking protection

— Access rights field indicate allowable access
* e.g., read-only, read-write, execute-only
* typically support multiple protection modes

— Protection violation fault if user doesn’t have necessary

page table base register virtual address
n-1 p_p-1 0
VPN acts as virtual page number (VPN) _
table index

valid access physical page number (PPN)

v

Page table

if valid=0 <
then page
not in memory

physical address

Integrating VM and cache

VA | PA miss |
Trans- Main
CPU lation Cache) Memory
hit F
data v

* Most caches “Physically Addressed”
— Accessed by physical addresses
— Allows multiple processes to have blocks in cache at a time
— Allows multiple processes to share pages
— Cache doesn’t need to be concerned with protection issues

» Access rights checked as part of address translation

» Perform address translation before cache lookup
— But this could involve a memory access itself (of the PTE)
— Of course, page table entries can also become cached

Speeding up translation with a TLB
» Translation Lookaside Buffer (TLB)

— Small hardware cache in MMU
— Maps virtual page numbers to physical page numbers
— Contains complete page table entries for small number of

pages
hit _
VA | PA miss
TLB - Main
CPU Lookup Cache) Memory
Mmiss | ! hit
Trans-
lation
] data

Address translation with a TLB

n-1 p_p-1 0
| virtual paT number | page offset | virtual address 3\
valid tag physical page number
> TLB
7‘@ J
TLB hit—0 } |
physical address)
tag index l byte offset
valid tag data
> Cache
4—
4O)
cache hit——(—— v data

Multi-level page tables

Level 2
» Given: Tables
— 4KB (2'?) page size
— 32-bit address space
— 4-byte PTE Level 1

* Problem: Table

— Would need a 4 MB page table!
« 220*4 bytes

*» Common solution

— Paged the page table — multi-level
page tables

— e.g., 2-level table (P6)

* Level 1 table: 1024 entries, each of
which points to a Level 2 page table.

* Level 2 table: 1024 entries, each of
which points to a page

Multi-level page table with k levels

» Virtual address split into kK VPNs and a VPO, each
VPN /is an index into a page table at level /

» Of course, now you really really need a TLB!

VIRTUAL ADDRESS
n-1 p-1 0
* VPN 1 t+ VPN 2 ¢ VPN k VPO
H_J
Level 1 Level 2 Level k
page table page table page table
»[PPN }~‘
m-1 v p'1 v 0
PPN PPO

PHYSICAL ADDRESS

Taking stock — main themes

* Programmer’s view
— Large “flat” address space
« Can allocate large blocks of contiguous addresses
— Processor “owns” machine
« Has private address space
» Unaffected by behaviour of other processes

* System view
— Virtual address space created by mapping to set of pages
* Need not be contiguous
 Allocated dynamically
» Enforce protection during address translation
— OS manages many processes simultaneously
« Continually switching among processes

» Especially when one must wait for a resource
— E.g., disk I/O to handle page fault

Simple memory system

* Memory is byte addressable
* Access are to 1-byte words

» 14-bit virtual addresses, 12-bit physical address
» Page size = 64 bytes (2°)

13 12 11 10 9 8 7 6 5 4 3 2 1 0

Virtual
address
< VPN >< Vpo >
(Virtual Page Number) (Virtual Page Offset)
1 10 9 8 7 6 5 4 3 2 1 0
Physical
address

A

X

v

PPN PPO
(Physical Page Number) (Physical Page Offset)

Simple memory system page table

* Only show first 16 entries

VPN | PPN | Valid | VPN | PPN | Valid
00 | 28 | 1 | 08 | 13 | 1
01 | — | o |09 | 17 | 1
02 | 3 | 1 |0A | 09 | 1
03 |02] 1 |oB| - | 0
04| - | oJoc| - | o0
05 | 16 | 1 | oD | 2D | 1
06 | - | o |O0E| 11| 1
07 | - | o | oF | oD | 1

Simple memory system TLB

* TLB

— 16 entries

— 4-way associative

< TLBT ><— TLBI *
13 12 11 10 9 8 6 5 4 3 2 1 0
“ VPN VPO >
Set | Tag | PPN | Valid| Tag | PPN | Valid | Tag | PPN | Valid | Tag | PPN | Valid

0 03 — 0 09 0D 1 00 — 0 07 02 1
1 03 2D 1 02 — 0 04 — 0 0A — 0
2 02 — 0 08 — 0 06 — 0 03 — 0
3 07 — 0 03 0D 1 0A 34 1 02 — 0

Simple memory system cache

» Cache
— 16 lines
— 4-byte line size
— Direct mapped

CT »<——— Cl —+—CcO0 —*

11 10 9 8 7 6 5 4 3 2 1 0

- PPN - PPO >
ldx Tag Valid BO B1 B2 B3 ldx Tag Valid BO B1 B2 B3

0 19 1 99 11 23 1" 8 24 1 3A 00 51 89

1 15 0 - - - - 9 2D 0 - - - -

2 1B 1 00 02 04 08 A 2D 1 93 15 DA 3B

3 36 0 - - - - B 0B 0 - - - -

4 32 1 43 6D 8F 09 C 12 0 - - - -

5 oD 1 36 72 FO 1D D 16 1 04 96 34 15

6 31 0 - - - - E 13 1 83 77 1B D3

7 16 1 1 C2 DF 03 F 14 0 - - - -

Address translation problem 9.4

» Virtual address 0x03d7

< TLBT *<— TLBI *
13 12 1 10 9 8 7 6 4 3 2 0
0 0 0 0 1 1 1 1 1 0 1
< VPN VPO >
VPN Oxf TLBI0X3 T BTagLOx3 TLB Hit? Y Page Fault? N PPN: Oxd
Set | Tag | PPN | Valid| Tag | PPN | Valid | Tag | PPN | Valid | Tag | PPN | Valid
0 03 — 0 09 0D 1 00 — 0 07 02 1
1 03 2D 1 02 — 0 04 — 0 0A — 0
2 02 — 0 08 — 0 06 — 0 03 — 0
3 07 — 0 I 03 oD 1 0A 34 1 02 — 0

Address translation problem 9.4

» Virtual address 0x03d7

« TLBT > TLBI
13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 1 1 0 1 0 1 1 1

- VPN VPO

v

VPN Oxf TLBI0X3 TLBTag 0x3 TLB Hit? Y Page Fault? N PPN: Oxd

» Physical address

A
5]
")
Z

X
5]
o
O

v

Address translation problem 9.4

» Virtual address 0x03d7

» Physical address
< CT > < Cl ———<—Cc0O —

11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 0 110 1 0 1 1 1

« PPN > PPO >
Offset(0X3 Cc|0x5 | c10xd| Hit? Y Byte returned: 0x1d

ldx Tag Valid BO B1 B2 B3 ldx Tag Valid BO B1 B2 B3
0 19 1 99 11 23 1" 8 24 1 3A 00 51 89
1 15 0 - - - - 9 2D 0 - - - -
2 1B 1 00 02 04 08 A 2D 1 93 15 DA 3B
3 36 0 - - - - B 0B 0 - - - -
4 32 1 43 6D 8F 09 C 12 0 - - - -
5 oD 1 36 72 FO 1D D 16 1 04 96 34 15
6 31 0 - - - - E 13 1 83 77 1B D3
7 16 1 1" C2 DF 03 F 14 0 - - - -

Summary

» Today

— VM motivation

— VM mechanisms

— Optimizing VM performance
» Next time - Linking

