
Dynamic Memory Allocation

Today
l  Dynamic memory allocation –
 mechanisms & policies
l  Memory bugs

Next time
l  Virtual memory

Fabián E. Bustamante, 2007

Dynamic memory allocation

2

" Why? Memory needs may be unknown at runtime
–  A program that orders items in a list – how many items?

" Two basic memory allocator types: explicit & implicit
–  Explicit: application allocates and frees space

•  E.g., malloc and free in C
–  Implicit: application allocates, but does not free space

•  E.g. garbage collection in Java, ML or Lisp

" Allocation
–  In both cases the memory allocator provides an abstraction of

memory as a set of blocks
–  Doles out free memory blocks to application

Malloc package

C standard library explicit allocator

" #include <stdlib.h>
" void *malloc(size_t size)

–  If successful:
•  Returns a pointer to a memory block of at least size bytes,

(typically) aligned to 8-byte boundary.
•  If size == 0, returns NULL

–  If unsuccessful: returns NULL (0) and sets errno.
" void *realloc(void *p, size_t size)

–  Changes size of block p and returns pointer to new block.
–  Contents of new block unchanged up to min of old and new

size.
" void free(void *p)

–  Returns the block pointed at by p to pool of available memory
–  p must come from a previous call to malloc or realloc.

3

Process memory image

kernel virtual memory!

Memory mapped region for!
shared libraries!

run-time heap (via malloc) !‏

program text (.text) !‏

initialized data (.data) !‏

uninitialized data (.bss) !‏

stack!

0!

%esp

memory invisible to!
 user code!

the “brk” ptr!

Allocators request
additional heap memory
from the operating
system using the sbrk
function.
!
error = sbrk(amt_more)

4

Malloc example

void foo(int n, int m) {
 int i, *p;

 /* allocate a block of n ints */
 if ((p = (int *) malloc(n * sizeof(int))) == NULL) {
 perror("malloc");
 exit(0);
 }
 for (i=0; i<n; i++) p[i] = i;

 /* add m bytes to end of p block */
 if ((p = (int *) realloc(p, (n+m) * sizeof(int))) == NULL) {
 perror("realloc");
 exit(0);
 }
 for (i=n; i < n+m; i++)‏ p[i] = i;

 /* print new array */
 for (i=0; i<n+m; i++)
 printf("%d\n", p[i]);

 free(p); /* return p to available memory pool */
}

5

Allocation examples

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

6

Constraints

" Applications
–  Can issue arbitrary sequence of allocation and free requests
–  Free requests must correspond to an allocated block

" Allocators
–  Can’t control number or size of allocated blocks
–  Must respond immediately to all allocation requests

•  i.e., can’t reorder or buffer requests
–  Must allocate blocks from free memory

•  i.e., can only place allocated blocks in free memory
–  Must align blocks so they satisfy all alignment requirements

•  8 byte alignment for GNU malloc (libc malloc) on Linux boxes
–  Can only manipulate and modify free memory
–  Can’t move the allocated blocks once they are allocated

•  i.e., compaction is not allowed

7

Goals of good malloc/free

" Primary
–  Good time performance for malloc and free

•  Ideally should take constant time (not always possible)
•  Should certainly not take linear time in the number of blocks

–  Good space utilization
•  User allocated structures should be large fraction of the heap
•  Want to minimize “fragmentation”

" Some others
–  Good locality properties

•  Structures allocated close in time should be close in space
•  “Similar” objects should be allocated close in space

–  Robust
•  Can check that free(p1) is on a valid allocated object p1
•  Can check that memory references are to allocated space

8

Performance goals: throughput

" Given some sequence of malloc and free requests:
" Want to maximize throughput and peak memory

utilization
–  These goals are often in conflict

" Throughput:
–  Number of completed requests per unit time
–  Example:

•  5,000 malloc calls and 5,000 free calls in 10 seconds
•  Throughput is 1,000 operations/second

9

Performance goals: Peak mem utilization

" Given some sequence of malloc and free requests
–  R0, R1, ..., Rk, ... , Rn-1

" Aggregate payload Pk:
–  malloc(p) results in a block with a payload of p bytes
–  After request Rk has completed, the aggregate payload Pk is

the sum of currently allocated payloads

" Current heap size is denoted by Hk
–  Assume that Hk is monotonically nondecreasing

" Peak memory utilization:
–  After k requests, peak memory utilization is:

•  Uk = (maxi≤k Pi) / Hk

Internal fragmentation

•  Poor memory utilization caused by fragmentation
–  Comes in two forms: internal and external fragmentation

" Internal fragmentation
–  The difference between the block size and the payload size

–  Due to overhead of maintaining heap data structures, padding

for alignment purposes, or explicit policy decisions (e.g., not to
split the block).

–  Depends only on the pattern of previous requests, so easy to
measure

payload!
Internal !
fragmentation!

block!

Internal !
fragmentation!

11

External fragmentation

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6) oops!!

Occurs when there is enough aggregate heap memory, but no
single free block is large enough

Depends on the pattern of future requests, so it’s difficult to
measure"

12

Implementation issues

" How do we know how much memory to free just given
a pointer?

" How do we keep track of the free blocks?
" What do we do with the extra space when allocating a

structure that is smaller than the free block it is placed
in?

" How do we pick a block to use for allocation – many
might fit?

" How do we reinsert freed block?

13

Knowing how much to free

" Standard method
– Keep length of a block in the word preceding the block

•  This word is often called the header field or header

– Requires an extra word for every allocated block

free(p0)

p0 = malloc(4) p0

Block size! data!

5!

14

Keeping track of free blocks

•  Implicit list using lengths -- links all blocks

•  Explicit list among the free blocks using pointers
within the free blocks

•  Segregated free list – different free lists for different

size classes

•  Blocks sorted by size
–  Can use a balanced tree with pointers within each free block,

and the length used as a key

5 4! 2!6!

5 4! 2!6!

15

Method 1: Implicit List

" Need to identify whether each block is free or allocated
–  Can use extra bit
–  Bit can be put in the same word as the size if block sizes are

always multiples of 2/4/8 (for alignment) – mask out low order
bit when reading size

size!

1 word!

Format of!
allocated and!
free blocks!

payload!

a = 1: allocated block !
a = 0: free block!
!
size: block size!
!
payload: application data!
(allocated blocks only) !‏
!

a!

optional!
padding!

16

Implicit list: Finding a free block

" First fit:
–  Search list from beginning, select first free block that fits
–  Can take linear time in num. of blocks (allocated and free)‏
–  In practice it can cause “splinters” at beginning of list

" Next fit:
–  Like first-fit, but start from end of previous search
–  Research suggests that fragmentation is worse

" Best fit:
–  Search the list, select free block with closest size that fits
–  Keeps fragments small --- usually helps fragmentation
–  Will typically run slower than first-fit

17

Implicit list: Allocating in free block

" Allocating in a free block – splitting
–  Since allocated space might be smaller than free space, we

might want to split the block

void addblock(ptr p, int len) {
 int newsize = ((len + 1) >> 1) << 1; // add 1 and round up
 int oldsize = *p & -2; // mask out low bit
 *p = newsize | 1; // set new length
 if (newsize < oldsize)‏
 *(p+newsize) = oldsize - newsize; // set length in remaining
} // part of block

4! 4! 2!6!

4! 2!4!

p!

2!4!

addblock(p, 2)

Implicit list: Freeing a block

" Simplest implementation:
–  Only need to clear allocated flag
–  But can lead to “false fragmentation”

There is enough free space, but the allocator won’t

be able to find it

4! 2!4! 2!

free(p) p

4! 4! 2!

4!

4! 2!

malloc(5) Oops!!

19

Implicit list: Coalescing

Join (coalesce) with next and/or previous block if free
–  Coalescing with next block

–  But how do we coalesce with previous block?

4! 2!4! 2!
free(p) p

4! 4! 2!

4!

6!

void free_block(ptr p) {
 *p = *p & -2; // clear allocated flag
 next = p + *p; // find next block
 if ((*next & 1) == 0)
 *p = *p + *next; // add to this block if
} // not allocated

20

Implicit list: Bidirectional coalescing

" Boundary tags [Knuth73]
–  Replicate size/allocated word at bottom of free blocks
–  Allows traversing a “list” backwards, but requires extra space
–  Important and general technique!

4! 4! 4! 4! 6! 4!6! 4!

size!
1 word!

Format of!
allocated and!
free blocks!

payload and!
padding!

a = 1: allocated block !
a = 0: free block!
!
size: total block size!
!
payload: application data!
(allocated blocks only) !‏
!

a!

size! a!Boundary tag!
 (footer) !‏

Header!

Donald Knuth
1938-

Constant time coalescing

allocated!

allocated!

allocated!

free!

free!

allocated!

free!

free!

block being!
freed!

Case 1! Case 2! Case 3! Case 4!

22

Constant time coalescing (Case 1)‏

" Both adjacent blocks are allocated
–  No coalescing is possible
–  Simple mark block free

m1! 1!

m1! 1!
n! 1!

n! 1!
m2! 1!

m2! 1!

m1! 1!

m1! 1!
n! 0!

n! 0!
m2! 1!

m2! 1!

static void *coalesce(void *bp)!
{!
...!
if (prev_alloc && next_alloc) {!

!return bp;!
}!
...!

Constant time coalescing (Case 2)‏

" Merge current and next block
–  Update header of current and footer of next

m1! 1!

m1! 1!
n+m2! 0!

n+m2! 0!

m1! 1!

m1! 1!
n! 1!

n! 1!
m2! 0!

m2! 0!

static void *coalesce(void *bp)!
{!
...!
if (prev_alloc && !next_alloc) {!
 size += GET_SIZE(HDRP(NEXT_BLKP(bp)));!
 PUT(HDRP(bp), PACK(size,0));!
 PUT(FTRP(bp), PACK(size,0));!
}!
...!

Constant time coalescing (Case 3)‏

" Previous block is merged with current
–  Update header of previous block and footer of current block

m1! 0!

m1! 0!
n! 1!

n! 1!
m2! 1!

m2! 1!

n+m1! 0!

n+m1! 0!
m2! 1!

m2! 1!

static void *coalesce(void *bp)!
{!
...!
if (!prev_alloc && next_alloc) {!
 size += GET_SIZE(HDRP(PREV_BLKP(bp))));!
 PUT(FTRP(bp), PACK(size,0));!
 PUT(HDRP(PREV_BLKP(bp)), PACK(size,0));!
 bp = PREV_BLKP(bp);!
}!
...!

Constant time coalescing (Case 4)‏

" All three blocks are merged
–  Update header of previous and footer of next block

m1! 0!

m1! 0!
n! 1!

n! 1!
m2! 0!

m2! 0!

n+m1+m2! 0!

n+m1+m2! 0!

static void *coalesce(void *bp)!
{!
...!
else {!
 size += GET_SIZE(HDRP(PREV_BLKP(bp))) + !
 GET_SIZE(FTRP(NEXT_BLKP(BP)));!
 PUT(HDRP(PREV_BLKP(bp)), PACK(size,0));!
 PUT(FTRP(NEXT_BLKP(bp)), PACK(size,0));!
 bp = PREV_BLKP(bp);!
}!
...!

Summary of key allocator policies

" Placement policy:
–  First fit, next fit, best fit, etc.
–  Trades off lower throughput for less fragmentation

" Splitting policy:
–  When do we go ahead and split free blocks?
–  How much internal fragmentation are we willing to tolerate?

" Coalescing policy:
–  Immediate coalescing: coalesce adjacent blocks each time

free is called
–  Deferred coalescing: try to improve performance of free by

deferring coalescing until needed. e.g.,
•  Coalesce as you scan the free list for malloc.
•  Coalesce when the amount of external fragmentation reaches

some threshold.

27

Implicit lists: summary

" Implementation: very simple
" Allocate: linear time worst case
" Free: constant time worst case -- even with coalescing
" Memory usage: will depend on placement policy

–  First fit, next fit or best fit

" Not used in practice for malloc/free because of linear
time allocate. Used in many special purpose
applications.

" However, the concepts of splitting and boundary tag
coalescing are general to all allocators.

28

Implicit memory management

" Garbage collection: automatic reclamation of heap-
allocated storage -- application never has to free

" Common in functional languages, scripting languages,
and modern object oriented languages:
–  Lisp, ML, Java, Perl, Mathematica,

" Variants (conservative garbage collectors) exist for C
and C++
–  Cannot collect all garbage

void foo() {
 int *p = malloc(128);
 return; /* p block is now garbage */
}

29

Garbage collection

" How does the memory manager know when memory
can be freed?
–  In general we cannot know what is going to be used in the

future since it depends on conditionals
–  But we can tell that certain blocks cannot be used if there are

no pointers to them

" Need to make certain assumptions about pointers

–  Memory manager can distinguish pointers from non-pointers
–  All pointers point to the start of a block

30

Memory as a graph

" We view memory as a directed graph
–  Each block a node, each pointer is an edge in the graph
–  Locations not in the heap that contain pointers into the heap

are called root nodes (e.g. registers, locations on the stack,
global variables)‏

Root nodes!

Heap nodes!

Not-reachable  
(garbage)‏!

reachable!

§  A node (block) is reachable if there is a path from any root to that node.
§  Non-reachable nodes are garbage (never needed by the application)‏

31

Mark and sweep collecting

" Can build on top of malloc/free package
–  Allocate using malloc until you “run out of space”

" When out of space:
–  Use extra mark bit in the head of each block
–  Mark: Start at roots and set mark bit on all reachable memory
–  Sweep: Scan all blocks and free blocks that are not marked

After mark"

After sweep"

Mark bit set"

free!free!

32

Before mark"

root!
1 2 3 4 5 6

John McCarthy
1927-2011

Memory-related bugs

" Why the fear?
–  Symptoms typically appear far, in time and space, from the

source

" Some common bugs worth looking at
–  Dereferencing bad pointers
–  Reading uninitialized memory
–  Overwriting memory
–  Referencing nonexistent variables
–  Freeing blocks multiple times
–  Referencing freed blocks
–  Failing to free blocks

33

Dereferencing bad pointers

" The classic scanf bug

" Should be &val
–  Best case – program terminates with an exception
–  Worst case – contents of val corresponds to a valid r/w area

and we overwrite memory ...

scanf(“%d”, val);

34

" While bss memory locations are always initialized to
zero, that’s not the case for the heap

" Assuming that heap data is initialized to zero

Reading uninitialized memory

/* return y = Ax */
int *matvec(int **A, int *x) {
 int *y = malloc(N*sizeof(int));
 int i, j;

 for (i=0; i<N; i++)‏
 for (j=0; j<N; j++)‏
 y[i] += A[i][j]*x[j];
 return y;
}

35

Overwriting memory

" Allocating the (possibly) wrong sized object

" Should have been
 p = malloc(N*sizeof(int*));

36

int **p;

p = malloc(N*sizeof(int));

for (i=0; i<N; i++) {
 p[i] = malloc(M*sizeof(int));
}

Overwriting memory

" Off-by-one errors – allocates N, tries to initialize N+1

37

int **p;

p = malloc(N*sizeof(int *));

for (i=0; i<=N; i++) {
 p[i] = malloc(M*sizeof(int));
}

Overwriting memory

" Not checking the max string size

" Basis for classic buffer overflow attacks
–  1988 Internet worm
–  Modern attacks on Web servers

38

char s[8];
int i;

gets(s); /* reads “123456789” from stdin */

Overwriting memory

" Referencing a pointer instead of the object it points to
–  Careful with precedence and associativity!

39

int *binheapDelete(int **binheap, int *size) {
 int *packet;
 packet = binheap[0];
 binheap[0] = binheap[*size - 1];
 *size--;
 heapify(binheap, *size, 0);
 return(packet);
}

Overwriting memory

" Misunderstanding pointer arithmetic

40

int *search(int *p, int val) {

 while (*p && *p != val)‏
 p += sizeof(int);

 return p;
}

Referencing nonexistent variables

" Forgetting that local variables disappear when
a function returns

41

int *foo () {
 int val;
 return &val;
}

Freeing blocks multiple times

" Nasty!

x = malloc(N*sizeof(int));
<manipulate x>
free(x);

y = malloc(M*sizeof(int));
<manipulate y>
free(x);

42

Referencing freed blocks

" Evil!

x = malloc(N*sizeof(int));
<manipulate x>
free(x);
...
y = malloc(M*sizeof(int));
for (i=0; i<M; i++)‏
 y[i] = x[i]++;

43

Failing to free blocks (memory leaks)

" Slow, long-term killer

foo() {
 int *x = malloc(N*sizeof(int));
 ...
 return;
}

44

Dealing with memory bugs

" Conventional debugger (gdb)
–  Good for finding bad pointer dereferences
–  Hard to detect the other memory bugs

" Debugging malloc (Utoronto CSRI malloc)
–  Wrapper around conventional malloc
–  Detects memory bugs at malloc and free boundaries

•  Memory overwrites that corrupt heap structures
•  Some instances of freeing blocks multiple times
•  Memory leaks

–  Cannot detect all memory bugs
•  Overwrites into the middle of allocated blocks
•  Referencing freed blocks
•  …

45

Dealing with memory bugs

" Some malloc implementations contain checking code
–  Linux glibc malloc: setenv MALLOC_CHECK_ 2

" Binary translator: valgrind(Linux), Purify
–  Powerful debugging and analysis technique
–  Rewrites text section of executable object file
–  Can detect all errors as debugging malloc
–  Can also check each individual reference at runtime

•  Bad pointers
•  Overwriting
•  Referencing outside of allocated block

" Garbage collection (Boehm-Weiser Conservative GC)
–  Let the system free blocks instead of the programmer.

46

Summary

" Memory matters
" Memory is not unbounded

–  It must be allocated and managed
–  Many applications are memory dominated

•  Especially those based on complex, graph algorithms

" Memory referencing bugs especially pernicious
–  Effects are distant in both time and space

47

