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Dynamic memory allocation 
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" Why? Memory needs may be unknown at runtime 
–  A program that orders items in a list – how many items? 

" Two basic memory allocator types: explicit & implicit 
–  Explicit:  application allocates and frees space  

•  E.g.,  malloc and free in C 
–  Implicit: application allocates, but does not free space 

•  E.g. garbage collection in Java, ML or Lisp 
 

" Allocation 
–  In both cases the memory allocator provides an abstraction of 

memory as a set of blocks 
–  Doles out free memory blocks to application 



Malloc package 

C standard library explicit allocator 

  

" #include <stdlib.h> 
" void *malloc(size_t size) 

–  If successful: 
•  Returns a pointer to a memory block of at least size bytes, 

(typically) aligned to 8-byte boundary. 
•  If size == 0, returns NULL 

–  If unsuccessful: returns NULL (0) and sets errno. 
" void *realloc(void *p, size_t size)  

–  Changes size of block p and returns pointer to new block. 
–  Contents of new block unchanged up to min of old and new 

size. 
" void free(void *p) 

–  Returns the block pointed at by p to pool of available memory 
–  p must come from a previous call to malloc or realloc. 
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Process memory image 

kernel virtual memory!

Memory mapped region for!
shared libraries!

run-time heap (via malloc) !‏

program text (.text) !‏

initialized data (.data) !‏

uninitialized data (.bss) !‏

stack!

0!

%esp 

memory invisible to!
 user code!

the “brk” ptr!

Allocators request 
additional heap memory 
from the operating 
system using the sbrk 
function. 
!
error = sbrk(amt_more) 
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Malloc example 

void foo(int n, int m) { 
  int i, *p; 
   
  /* allocate a block of n ints */ 
  if ((p = (int *) malloc(n * sizeof(int))) == NULL) { 
    perror("malloc"); 
    exit(0); 
  } 
  for (i=0; i<n; i++) p[i] = i; 
 
  /* add m bytes to end of p block */ 
  if ((p = (int *) realloc(p, (n+m) * sizeof(int))) == NULL) { 
    perror("realloc"); 
    exit(0); 
  } 
  for (i=n; i < n+m; i++)‏ p[i] = i; 
 
  /* print new array */   
  for (i=0; i<n+m; i++)  
    printf("%d\n", p[i]); 
 
  free(p); /* return p to available memory pool */ 
} 
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Allocation examples 

p1 = malloc(4) 

p2 = malloc(5) 

p3 = malloc(6) 

free(p2) 

p4 = malloc(2) 
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Constraints 

" Applications 
–  Can issue arbitrary sequence of allocation and free requests 
–  Free requests must correspond to an allocated block 

" Allocators 
–  Can’t control number or size of allocated blocks 
–  Must respond immediately to all allocation requests 

•  i.e., can’t reorder or buffer requests 
–  Must allocate blocks from free memory 

•  i.e., can only place allocated blocks in free memory 
–  Must align blocks so they satisfy all alignment requirements 

•  8 byte alignment for GNU malloc (libc malloc) on Linux boxes 
–  Can only manipulate and modify free memory 
–  Can’t move the allocated blocks once they are allocated 

•  i.e., compaction is not allowed 
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Goals of good malloc/free  

" Primary 
–  Good time performance for malloc and free 

•  Ideally should take constant time (not always possible) 
•  Should certainly not take linear time in the number of blocks 

–  Good space utilization 
•  User allocated structures should be large fraction of the heap 
•  Want to minimize “fragmentation” 

" Some others 
–  Good locality properties 

•  Structures allocated close in time should be close in space 
•  “Similar” objects should be allocated close in space 

–  Robust 
•  Can check that free(p1) is on a valid allocated object p1 
•  Can check that memory references are to allocated space 
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Performance goals: throughput 

" Given some sequence of malloc and free requests: 
" Want to maximize throughput and peak memory 

utilization 
–  These goals are often in conflict 

" Throughput: 
–  Number of completed requests per unit time 
–  Example: 

•  5,000 malloc calls and 5,000 free calls in 10 seconds  
•  Throughput is 1,000 operations/second 
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Performance goals: Peak mem utilization 

" Given some sequence of malloc and free requests 
–   R0, R1, ..., Rk, ... , Rn-1 

" Aggregate payload Pk:  
–  malloc(p) results in a block with a payload of p bytes 
–  After request Rk has completed, the aggregate payload Pk  is 

the sum of currently allocated payloads 

" Current heap size is denoted by Hk 
–  Assume that Hk is monotonically nondecreasing 

" Peak memory utilization:  
–  After k requests, peak memory utilization is: 

•  Uk = ( maxi≤k Pi )  /  Hk 



Internal fragmentation 

•  Poor memory utilization caused by fragmentation 
–  Comes in two forms: internal and external fragmentation 

" Internal fragmentation 
–  The difference between the block size and the payload size 
 

 
 

 
–  Due to overhead of maintaining heap data structures, padding 

for alignment purposes, or explicit policy decisions (e.g., not to 
split the block). 

–  Depends only on the pattern of previous requests, so easy to 
measure 

payload!
Internal !
fragmentation!

block!

Internal !
fragmentation!
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External fragmentation 

p1 = malloc(4) 

p2 = malloc(5) 

p3 = malloc(6) 

free(p2) 

p4 = malloc(6) oops!!

Occurs when there is enough aggregate heap memory, but no 
single free block is large enough 

Depends on the pattern of future requests, so it’s difficult to 
measure"
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Implementation issues 

" How do we know how much memory to free just given 
a pointer? 

" How do we keep track of the free blocks? 
" What do we do with the extra space when allocating a 

structure that is smaller than the free block it is placed 
in? 

" How do we pick a block to use for allocation – many 
might fit? 

" How do we reinsert freed block? 
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Knowing how much to free 

"  Standard method 
– Keep length of a block in the word preceding the block 

•  This word is often called the header field or header 

– Requires an extra word for every allocated block 

free(p0) 

p0 = malloc(4) p0 

Block size! data!

5!
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Keeping track of free blocks 

•  Implicit list using lengths -- links all blocks 

•  Explicit list among the free blocks using pointers 
within the free blocks 

 
•  Segregated free list – different free lists for different 

size classes 

•  Blocks sorted by size 
–  Can use a balanced tree with pointers within each free block, 

and the length used as a key 

5 4! 2!6!

5 4! 2!6!

15 



Method 1: Implicit List 

" Need to identify whether each block is free or allocated 
–  Can use extra bit 
–  Bit can be put in the same word as the size if block sizes are 

always multiples of 2/4/8 (for alignment) – mask out low order 
bit when reading size 

size!

1 word!

Format of!
allocated and!
free blocks!

payload!

a = 1: allocated block  !
a = 0: free block!
!
size: block size!
!
payload: application data!
(allocated blocks only) !‏
!

a!

optional!
padding!
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Implicit list: Finding a free block 

" First fit: 
–  Search list from beginning, select first free block that fits 
–  Can take linear time in num. of blocks (allocated and free)‏ 
–  In practice it can cause “splinters” at beginning of list 

" Next fit: 
–  Like first-fit, but start from end of previous search 
–  Research suggests that fragmentation is worse  

" Best fit: 
–  Search the list, select free block with closest size that fits 
–  Keeps fragments small --- usually helps fragmentation 
–  Will typically run slower than first-fit 
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Implicit list: Allocating in free block 

" Allocating in a free block – splitting 
–  Since allocated space might be smaller than free space, we 

might want to split the block 

void addblock(ptr p, int len) { 
  int newsize = ((len + 1) >> 1) << 1;  // add 1 and round up 
  int oldsize = *p & -2;                // mask out low bit 
  *p = newsize | 1;                     // set new length 
  if (newsize < oldsize)‏ 
    *(p+newsize) = oldsize - newsize;   // set length in remaining 
}                                       //   part of block 

4! 4! 2!6!

4! 2!4!

p!

2!4!

addblock(p, 2) 



Implicit list: Freeing a block 

" Simplest implementation: 
–  Only need to clear allocated flag 
–  But can lead to “false fragmentation”  

 
 
 
 
 
 
 
There is enough free space, but the allocator won’t 

be able to find it 

4! 2!4! 2!

free(p) p 

4! 4! 2!

4!

4! 2!

malloc(5) Oops!!
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Implicit list: Coalescing 

Join (coalesce) with next and/or previous block if free 
–  Coalescing with next block 

    
 
 
 
 
 

 
 
 
 

–  But how do we coalesce with previous block? 

4! 2!4! 2!
free(p) p 

4! 4! 2!

4!

6!

void free_block(ptr p) { 
    *p = *p & -2;          // clear allocated flag 
    next = p + *p;         // find next block 
    if ((*next & 1) == 0) 
      *p = *p + *next;    // add to this block if 
}                         //    not allocated 
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Implicit list: Bidirectional coalescing  

" Boundary tags [Knuth73] 
–  Replicate size/allocated word at bottom of free blocks 
–  Allows traversing a “list” backwards, but requires extra space 
–  Important and general technique! 

4! 4! 4! 4! 6! 4!6! 4!

size!
1 word!

Format of!
allocated and!
free blocks!

payload and!
padding!

a = 1: allocated block  !
a = 0: free block!
!
size: total block size!
!
payload: application data!
(allocated blocks only) !‏
!

a!

size! a!Boundary tag!
  (footer) !‏

Header!

Donald Knuth 
1938- 



Constant time coalescing 

allocated!

allocated!

allocated!

free!

free!

allocated!

free!

free!

block being!
freed!

Case 1! Case 2! Case 3! Case 4!
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Constant time coalescing (Case 1)‏ 

" Both adjacent blocks are allocated 
–  No coalescing is possible 
–  Simple mark block free 

m1! 1!

m1! 1!
n! 1!

n! 1!
m2! 1!

m2! 1!

m1! 1!

m1! 1!
n! 0!

n! 0!
m2! 1!

m2! 1!

static void *coalesce(void *bp)!
{!
...!
if (prev_alloc && next_alloc) {!

!return bp;!
}!
...!



Constant time coalescing (Case 2)‏ 

" Merge current and next block 
–  Update header of current and footer of next 

m1! 1!

m1! 1!
n+m2! 0!

n+m2! 0!

m1! 1!

m1! 1!
n! 1!

n! 1!
m2! 0!

m2! 0!

static void *coalesce(void *bp)!
{!
...!
if (prev_alloc && !next_alloc) {!
   size += GET_SIZE(HDRP(NEXT_BLKP(bp)));!
   PUT(HDRP(bp), PACK(size,0));!
   PUT(FTRP(bp), PACK(size,0));!
}!
...!



Constant time coalescing (Case 3)‏ 

" Previous block is merged with current 
–  Update header of previous block and footer of current block 

m1! 0!

m1! 0!
n! 1!

n! 1!
m2! 1!

m2! 1!

n+m1! 0!

n+m1! 0!
m2! 1!

m2! 1!

static void *coalesce(void *bp)!
{!
...!
if (!prev_alloc && next_alloc) {!
   size += GET_SIZE(HDRP(PREV_BLKP(bp))));!
   PUT(FTRP(bp), PACK(size,0));!
   PUT(HDRP(PREV_BLKP(bp)), PACK(size,0));!
   bp = PREV_BLKP(bp);!
}!
...!



Constant time coalescing (Case 4)‏ 

" All three blocks are merged 
–  Update header of previous and footer of next block 

m1! 0!

m1! 0!
n! 1!

n! 1!
m2! 0!

m2! 0!

n+m1+m2! 0!

n+m1+m2! 0!

static void *coalesce(void *bp)!
{!
...!
else {!
   size += GET_SIZE(HDRP(PREV_BLKP(bp))) + !
        GET_SIZE(FTRP(NEXT_BLKP(BP)));!
   PUT(HDRP(PREV_BLKP(bp)), PACK(size,0));!
   PUT(FTRP(NEXT_BLKP(bp)), PACK(size,0));!
   bp = PREV_BLKP(bp);!
}!
...!



Summary of key allocator policies 

" Placement policy: 
–  First fit, next fit, best fit, etc. 
–  Trades off lower throughput for less fragmentation   

" Splitting policy: 
–  When do we go ahead and split free blocks? 
–  How much internal fragmentation are we willing to tolerate? 

" Coalescing policy: 
–  Immediate coalescing: coalesce adjacent blocks each time 

free is called  
–  Deferred coalescing: try to improve performance of free by 

deferring coalescing until needed. e.g., 
•  Coalesce as you scan the free list for malloc. 
•  Coalesce when the amount of external fragmentation reaches 

some threshold. 
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Implicit lists: summary 

" Implementation: very simple 
" Allocate: linear time worst case 
" Free: constant time worst case -- even with coalescing 
" Memory usage: will depend on placement policy 

–  First fit, next fit or best fit 

" Not used in practice for malloc/free because of linear 
time allocate.  Used in many special purpose 
applications. 

" However, the concepts of splitting and boundary tag 
coalescing are general to all allocators. 
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Implicit memory management 

" Garbage collection: automatic reclamation of heap-
allocated storage -- application never has to free 

" Common in functional languages, scripting languages, 
and modern object oriented languages: 
–  Lisp, ML, Java, Perl, Mathematica,  

" Variants (conservative garbage collectors) exist for C 
and C++ 
–  Cannot collect all garbage 

void foo() { 
   int *p = malloc(128); 
   return; /* p block is now garbage */ 
} 
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Garbage collection 

" How does the memory manager know when memory 
can be freed? 
–  In general we cannot know what is going to be used in the 

future since it depends on conditionals 
–  But we can tell that certain blocks cannot be used if there are 

no pointers to them 

 
" Need to make certain assumptions about pointers 

–  Memory manager can distinguish pointers from non-pointers 
–  All pointers point to the start of a block  
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Memory as a graph 

" We view memory as a directed graph 
–  Each block a node, each pointer is an edge in the graph 
–  Locations not in the heap that contain pointers into the heap 

are called root  nodes  (e.g. registers, locations on the stack, 
global variables)‏ 

Root nodes!

Heap nodes!

Not-reachable  
(garbage)‏!

reachable!

§  A node (block) is reachable  if there is a path from any root to that node. 
§  Non-reachable nodes are garbage (never needed by the application)‏ 
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Mark and sweep collecting 

" Can build on top of malloc/free package 
–  Allocate using malloc until you “run out of space” 

" When out of space: 
–  Use extra mark bit in the head of each block 
–  Mark: Start at roots and set mark bit on all reachable memory 
–  Sweep: Scan all blocks and free blocks that are not marked 

 

After mark"

After sweep"

Mark bit set"

free!free!

32 

Before mark"

root!
1 2 3 4 5 6 

John McCarthy 
1927-2011 



Memory-related bugs 

" Why the fear? 
–  Symptoms typically appear far, in time and space, from the 

source 

" Some common bugs worth looking at 
–  Dereferencing bad pointers 
–  Reading uninitialized memory 
–  Overwriting memory 
–  Referencing nonexistent variables 
–  Freeing blocks multiple times 
–  Referencing freed blocks 
–  Failing to free blocks 
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Dereferencing bad pointers 

" The classic scanf bug 

" Should be &val 
–  Best case – program terminates with an exception 
–  Worst case – contents of val corresponds to a valid r/w area 

and we overwrite memory ... 
 

scanf(“%d”, val); 
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" While bss memory locations are always initialized to 
zero, that’s not the case for the heap 

" Assuming that heap data is initialized to zero 

Reading uninitialized memory 

/* return y = Ax */ 
int *matvec(int **A, int *x) {  
   int *y = malloc(N*sizeof(int)); 
   int i, j; 
 
   for (i=0; i<N; i++)‏ 
      for (j=0; j<N; j++)‏ 
         y[i] += A[i][j]*x[j]; 
   return y; 
} 
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Overwriting memory 

" Allocating the (possibly) wrong sized object 

" Should have been  
  p = malloc(N*sizeof(int*)); 
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int **p; 
 
p = malloc(N*sizeof(int)); 
 
for (i=0; i<N; i++) { 
   p[i] = malloc(M*sizeof(int)); 
} 



Overwriting memory 

" Off-by-one errors – allocates N, tries to initialize N+1 
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int **p; 
 
p = malloc(N*sizeof(int *)); 
 
for (i=0; i<=N; i++) { 
   p[i] = malloc(M*sizeof(int)); 
} 



Overwriting memory 

" Not checking the max string size 

" Basis for classic buffer overflow attacks 
–  1988 Internet worm 
–  Modern attacks on Web servers 
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char s[8]; 
int i; 
 
gets(s);  /* reads “123456789” from stdin */  
 



Overwriting memory 

" Referencing a pointer instead of the object it points to 
–  Careful with precedence and associativity! 
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int *binheapDelete(int **binheap, int *size) { 
   int *packet; 
   packet = binheap[0]; 
   binheap[0] = binheap[*size - 1]; 
   *size--; 
   heapify(binheap, *size, 0); 
   return(packet); 
} 



Overwriting memory 

" Misunderstanding pointer arithmetic 
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int *search(int *p, int val) { 
    
   while (*p && *p != val)‏ 
      p += sizeof(int); 
 
   return p; 
} 



Referencing nonexistent variables 

" Forgetting that local variables disappear when 
a function returns 
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int *foo () { 
   int val; 
   return &val; 
}   



Freeing blocks multiple times 

" Nasty! 

x = malloc(N*sizeof(int)); 
<manipulate x> 
free(x); 
 
y = malloc(M*sizeof(int)); 
<manipulate y> 
free(x); 
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Referencing freed blocks 

" Evil!  

x = malloc(N*sizeof(int)); 
<manipulate x> 
free(x); 
... 
y = malloc(M*sizeof(int)); 
for (i=0; i<M; i++)‏ 
   y[i] = x[i]++; 
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Failing to free blocks (memory leaks) 

" Slow, long-term killer 

foo() { 
   int *x = malloc(N*sizeof(int)); 
   ... 
   return; 
} 
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Dealing with memory bugs 

" Conventional debugger (gdb) 
–  Good for finding bad pointer dereferences 
–  Hard to detect the other memory bugs 

" Debugging malloc (Utoronto CSRI malloc) 
–  Wrapper around conventional malloc 
–  Detects memory bugs at malloc and free boundaries 

•  Memory overwrites that corrupt heap structures 
•  Some instances of freeing blocks multiple times 
•  Memory leaks 

–  Cannot detect all memory bugs 
•  Overwrites into the middle of allocated blocks 
•  Referencing freed blocks 
•  … 
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Dealing with memory bugs 

" Some malloc implementations contain checking code 
–  Linux glibc malloc: setenv MALLOC_CHECK_ 2 

" Binary translator: valgrind(Linux), Purify 
–  Powerful debugging and analysis technique 
–  Rewrites text section of executable object file 
–  Can detect all errors as debugging malloc 
–  Can also check each individual reference at runtime 

•  Bad pointers 
•  Overwriting 
•  Referencing outside of allocated block 

" Garbage collection (Boehm-Weiser Conservative GC) 
–  Let the system free blocks instead of the programmer. 
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Summary 

" Memory matters 
" Memory is not unbounded 

–  It must be allocated and managed 
–  Many applications are memory dominated 

•  Especially those based on complex, graph algorithms 

" Memory referencing bugs especially pernicious 
–  Effects are distant in both time and space 
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