Fabian E. Bustamante, 2007

Cache Memories

Topics

» Generic cache memory organization
» Direct mapped caches

» Set associative caches

» Impact of caches on performance

Next time

» Dynamic memory allocation and
memory bugs

Cache memories

» Cache memories are small, fast SRAM-based
memories managed automatically in hardware.

— Hold frequently accessed blocks of main memory

» CPU looks first for data in L1, thenin L2, ..., then in
main memory.

» Typical bus structure:

CPU chip
register file
=L /|ALU
cache % |

cache bus @ : system bus memory bus
‘ < : . < :::: > < : > main
L2 cache > bus interface bridge memory

Inserting an L1 cache

The tiny, very fast CPU register file
has room for four 4-byte words.

the CPU register file and

The transfer unit between =
the cache is a 4-byte block. {

line O The small fast L1 cache has room
for two 4-word blocks.

line 1
The transfer unit between { X

the cache and main
memory is a 4-word block
(16 bytes).

block 10 || abcd

The big slow main memory
has room for many 4-word
blocks.

block 21 pqgrs

block 30 || wWXYyz

General organization of a cache memory

Memory address: m bits
Cache: S = 25 sets per line perline per cache block
A A
Set: E lines / :) =
valid tag o[1 ce |B-1 3
Line holds data block set 0: > §
(size B) valid | tag o1]| - [B "
J
valid tag o (1 cee B~
set 1:
S =2 sets valid | tag o1] - [B
Cache’s organization
characterized by
(S, E, B, m)
|va|id tag o| 1] - |BA
Cache size: set S-1:
C=SxExB ' ,
data bytes \ valid tag o (1 ce | B-1

Addressing caches

Address A:
t bits s bits b bits
m-1 0
Y tag 0[1]---|B1 \ JAN) \ J
set 0: 0oc Y Y Y
v tag ol1[--- B <tag> <setindex> <block offset>
v| [tag |[0]1 B |
set1: e
v tag 0j1f---|B1 The word at address A is in the cache if
the tag bits in one of the <valid> lines in
set <set index> match <tag>.
V tag O(1]--- |B-1
set S-1: coe The word contents begin at offset
v tag ol1[--- B <block offset> bytes from the beginning
of the block.

Direct-mapped cache

» Simplest kind of cache
» Characterized by exactly one line per set.

set 0:| alid tag cache block } E=1 lines per set

set 1: | |valid tag cache block

set S-1:| |valid tag cache block

Accessing direct-mapped caches

» Set selection

— Use the set index bits to determine the set of
Interest.

set 0: |va|id tag cache block
selected set | ., . |va|id tag cache block

tbits / sbits) b bits ,
00001 set S-1: |vaI|d tag cache block

m-1

tag set index block offsef’

Accessing direct-mapped caches

» Line matching and word selection

— Line matching: Find a valid line in the selected set
with a matching tag

— Word selection: Then extract the word

=1? (1) The valid bit must be set

0 1 2 3 4 5 6 7
selected set (i): I 1 I | 0110 I Wo | Wy | W, | Wy ||
(2) The tag bits in the cache ¥ 3) If (1) and (2). then
line must match the =? 3) (ca)lche h(it),
tag bits in the address l and block offset
q N f 2 A selects

t bits s bits b bits
0110 i 100

tag set index block offset’

starting byte.

m-1

Direct-mapped cache simulation

m=16 byte addresses, B=2 bytes/block,

1 so b S=4 sets, E=1 entry/set Tag + index
XX X Address | Tag Index Offset Block # umquely dentifies
each block
0 0 00 0 0
1 0 00 1 0o |
2 0 01 0 1
3 0 01 1 1
4 0 10 0 2 | Multiple blocks
5 0 10 1 2 | map to the same
6 0 11 0 3 | cacheset(0 &4
And you can tell L 7 0 11 1 3 |to0,1&51to1)
them apart by 8 1 00 0 4 _—
the tag r 1 00 1 4
10 1 01 0 5
11 1 01 1 5
12 1 10 0 6
13 1 10 1 6
14 1 11 0 7
15 1 11 1 7

Direct-mapped cache simulation

0 [0000,] (miss)

1 [0001,] (hit)

13 [1101,] (miss)

8 [1000,] (miss)

0 [0000,] (miss)

A conflict miss

v tag block[0] block[1]
11 0 [m[0] | m[1]
v tag block[0] block[1]
11 0 [m[0] | m[1]
11 0 | m[12]] m[13]
v tag block[0] block[1]
11 0 m[8 | m[9]
11 0 | m[12]] m[13]
v tag block[0] block[1]
11 0 [m[0] | m[1]
1] 0 | m[12]] m[13]

Why use middle bits as index?

4-line Cache High-Order Middle-Order
Bit Indexing Bit Indexing
00 00 00
01 01 00
10 10 00
11 11 00

o
o
o
=

o
[
o
[

» High-order bit indexing

— Adjacent memory lines would
map to same cache entry

— Poor use of spatial locality

[
o
o
[

[
[
o
[

o
o
=
o

o
[
[
o

» Middle-order bit indexing

— Consecutive memory lines
map to different cache lines

— Can hold C-byte region of
address space in cache at one
time

[
o
[
o

[
[
[
o

o
o
[
[

o
[
[
[

[
o
[
[

[
[
[
[

Set associative caches

» |n direct mapped caches, since every set as exactly
one line — conflict misses

» Set associative cache — >1 line per set (1< E < C/B)
— E-way associative

|va|id tag cache block
set 0: E=2 lines per set
|va|id tag cache block
|va|id tag cache block
set 1:
|va|id tag cache block
|va|id tag cache block
set S-1:
|va|id tag cache block

Accessing set associative caches

» Set selection
— identical to direct-mapped cache

valid tag cache block
set O:
valid tag cache block
valid ta cache block
Selected set ¢ 1. 9

valid | tag cache block

It valid | tag cache block

tbits [_ : l;i:)s1) bbits SetS-1:) tag cache block

™1 tag set index block offsét

Accessing set associative caches

» Line matching and word selection
— must compare the tag in each valid line in the selected set.

=1? (1) The valid bit must be set.

A A

0 1 2 3 4 5 6 7

1 1001
selected set (i)t m | 0110 | I_"".Q W Wz_ﬂJ

(3) If (1) and (2), then

(2) The tag bits in one v v

of the cache lines must =? cache hit, and
match the tag bits in I r block offset selects
the address starting byte.
t bits s bits b bits
0110 i 100

m-1

tag set index block offset’

Fully associative caches

» A single set with all the cache lines (E = C/B)
— Set selection is trivial, only one set

— Line matching and word selection — same as with set
associative

— Pricy so typically use for small caches like TLBs

set 0:

t bits

|va|id tag cache block

|va|id tag cache block

|va|id tag cache block

|va|id tag cache block

|va|id tag cache block
b bits

m-1 tag

block offset °

\

> E=C/B lines

The issues with writes

» So far, all examples have used reads — simple
— Look for a copy of the desired word, if hit, return
— Else, fetch block from next level, cache it, return word

» For writes — a bit more complicated
— If there’s a hit, what to do after updating the cache copy?

» Write it to next level? Write-through; simple but expensive

» Defer update? Write-back; write when the block is evicted, faster
but more complex (need a dirty bit)

The issues with writes

» For writes — a bit more complicated

— If there’s a miss, bring it to cache or write through?

» Write-allocate — Bring the block to cache and update; leverage
spatial locality but a block transfer per write miss

» No-write-allocate — Write through bypassing the cache

— Write through caches are typically no-write-allocate

— As logic density increases, write-back’s complexity is
less of an issue and performance is a plus

Real Cache Hierarchies

L1 Data

1 cycle

16 KB

4-way assoc L2 Unified

Write-through 128KB--2 MB

32B lines 4-way assoc

Write-back

L1 Instruction [Write allocat

1 cycle 32B lines

16 KB, 4-way
32B lines

Regs.

Main

e Pentium 11l Xeon

Processor Chip

» Caches can be for anything (unified) or specialized for
data/instruction (d-cache & i-cache); why specialized?
— Processor can read both at the same time

— i-caches are typically read-only, simpler, and with different
access patterns

— Data and instruction access can’t create conflict with each
other

Real Cache Hierarchies

Core i7

L1 Data
@
9 4 cycles
« 32KB B 3
8-way assoc L2 Unified L3 Unified
11 cycles 30-40 cycles Main
L1 Instruction 256KB 8mB Memory
8-way assoc 16-way assoc
4 cycles
32KB
8-way assoc
Core 0

Processor chip

larger,
slower,
I ———
cheaper
Size: 32KB 256KB 8MB
E: 8-way 8-way 16-way

Access: 4 cycles 11 cycles 30-40 cycles

Cache performance metrics

+» Miss Rate

— Fraction of memory references not found in cache
— Typical numbers:
« 3-10% for L1
« can be quite small (e.g., < 1%) for L2, depending on size, etc.
» Hit Time
— Time to deliver a line in the cache to the processor
* includes time to determine whether the line is in the cache
— Typical numbers:
« 1-2 clock cycle for L1, 5-20 clock cycles for L2

» Miss Penalty

— Additional time required because of a miss
 Typically 50-200 cycles for main memory (increasing)

Cache performance metrics

» Big difference between a hit and a miss
— 100x if you only have L1 and main memory

» A 99% hit rate is twice as good as 97% rate?

— Consider
« Cache hit time 1 cycle
» Miss penalty 100 cycles

— Average access time

* 97% hitrate: 0.97 * 1 cycle + 0.03 * (1+100 cycles) = 1
cycle + 0.03 * 100 cycles = 4 cycles

* 99% hit rate: 0.99 * 1 cycle + 0.01* (1+100 cycles) = 1
cycle + 0.01 * 100 cycles = 2 cycles

Writing cache-friendly code

» Programs with better locality will tend to have lower
miss rates and run faster

» Basic approach to cache friendly code

— Make the common case go fast — core loops in core functions
— Minimize the number of cache misses in each inner loop — all

» Example
— Repeated references to variables are good (temporal locality)
— Stride-1 reference patterns are good (spatial locality)

cold cache,
4-byte words,
4-word cache
blocks

other things being equal, better miss rates means faster runs

{

int sumarrayrows (int a[M] [N])

int i, j, sum = 0;

for (i = 0; 1 < M; i++)
for (j = 0; j < N; j++)
sum += a[i][]j];
return sum;

Miss rate =1/4 = 25%

int sumarraycols(int a[M] [N])

{

int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; 1 < M; i++)
sum += a[i] []];
return sum;

} Miss rate =100%

The memory mountain

» Read throughput (read bandwidth)
— Number of bytes read from memory per sec (MB/s)
» Memory mountain

— Measured read throughput as a function of spatial and
temporal locality

— Compact way to characterize memory system performance

/* Run test(elems, stride) and return
read throughput (MB/s) */

/* The test function */ double run(int size, int stride, double Mhz)
void test(int elems, int stride) { {
int i, result = 0;
volatile int sink;

double cycles;
int elems = size / sizeof (int);

for (i = 0; 1 < elems; i += stride) jr U wp (Ee ?ache */
result += data[i]; test (elems, stride) ;

/* call test(elems,stride) */

/* So compiler doesn't optimize
cycles = fcyc2(test, elems, stride, 0);

away the loop */

sink = result;
} /* convert cycles to MB/s */

return (size / stride) / (cycles / Mhz);

The memory mountain for Intel Core i/

An artifact of
overhead not
being amortized

700(Flat line from hw L1
prefetching in Core i7 —

(undocumented algorithm) ']

Even with poor Ry /
temporal loc, | Core i7
spatial loc. helps! 2.67GHz

= = 32KB L1 d-cache

=]] -

2 4000 // A\ L2 [256KB L2 cache

%’ N7 CO Vo » A 8MB L3 cache

£ 3000 T TN\ /\\\K\f N

g L3 DANN Ridges of temporal

e 2000 7 T] locality

1Q
Slopes of spatial ;/
locality 0 ko Mem
% o $
(7] Ltw) ~ e %
w o X 5 7
T =2 8 size byt
. M ~— 1z
Stride (x8 bytes) ® = o N = = N e (bytes)
(7)) o ©
(]) h

64M

Rearranging loops to improve locality

» Matrix multiply
— Multiply N x N matrices
— O(N?3) total operations

— Accesses
* N reads per source element

* N values summed per destination
— but may be able to hold in register

/* ijk */ Variable sum
for (i=0; i<n; i++) { held in register
for (j=0; j<n; Jj++) { //

sum = 0.0; <
for (k=0; k<n; k++)

sum += a[i][k] * b[k]I[jl;
c[i] []J] = sum;

}

Miss rate analysis for matrix multiply

» Assume:
— Line size = 32B (big enough for 4 64-bit words)
— Matrix dimension (N) is very large
» A single matrix row does not fit in L1
— Compiler stores local variables in registers

» Analysis method:
— Look at access pattern of inner loop

Matrix multiplication (ijk)

/* ijk */ Inner loop:
for (i=0; i<n; i++) {
for (j=0; j<n; j++) { ()
sum = 0.0; (i) QD
for (k=0; k<n; k++) ’
sum += a[i] [k] * b[k][j]; A B C
c[il[3j] = sum; ‘ ‘ ‘
Row-wise Column- Fixed

wise

Per iteration

Loads mmm C misses | Total misses

1.00 0.00 1.25
/\ I
Each cache block holds 4 But it scans B with a

elements (doublewords) stride of n

Matrix multiplication (jik)

/* jik */ Inner loop:
for (3=0; j<n; Jj++) {
for (i=0; i<n; i++) { (*,J)
sum = 0.0; g _ |:I: Q,J)
for (k=0; k<n; k++) (1,%)
sum += a[i] [k] * b[k][3]; A B C
c[i][] = sum

} |

Row-wise Column- Fixed
wise

Per iteration

Loads mmm C misses | Total misses

0.00 1.25

Matrix multiplication (jki)

/* ki >/ Inner loop:
for (3j=0; j<n; Jj++) {
for (k=0; k<n; k++) { (*,Kk) (*,))
= bk][j]; ” (k.j)
for (i=0; i<n; i++) =
c[i1[j] +=|al[i][k] * r; A B C
Column - Fixed Column-
wise wise

Per iteration

Loads mmm C misses | Total misses

1.00 2.00
J

Scan A and C with stride of n; a miss on
each iteration; that plus 1 more memory op!

Matrix multiplication (kji)

/* kji */

Inner loop:
for (k=0; k<n; k++) {
for (j=0; j<n; j++) { (*,k) ("))
= b[k][]j]; ” (k.j)
for (i=0; i<n; i++) =
c[il [§] +=|alil[k] * x; "\ T ‘C
Column- Fixed Column-
wise wise

Per iteration

Loads mmm C misses | Total misses

1.00 2.00

Matrix multiplication (kij)

/* kij */

for (i=0; i<n;
r = a[i] [k];

Per iteration

Inner loop:

for (k=0; k<n; k++) {

it+) | (i,k) (k,")
D O

for (j=0; j<n; j++) A B C
c[1] []J] +=

r * b[k][]]; ‘ ‘ ‘

Fixed Row-wise Row-wise

Loads mmm C misses | Total misses

0.25 0.50
____S\‘\\\\\

An interesting trade-off; one more
memory operation for fewer misses

Matrix multiplication (ikj)

/* ikj */
for (i=0; i<n; i++) {

for (k=0; k<n; k++) { (i,K) E(k,*)g
r = a[i] [k]; 0 (1,%)
B C

for (j=0; j<n; j++) A
c[i][J] +=|r * b[k][]J]; ‘ ‘ ‘

Inner loop:

Fixed Row-wise Row-wise

Per iteration

Loads mmm C misses | Total misses

0.25 0.50

Summary of matrix multiplication

Matrix A misses C misses | Total
multiply misses
class

0.25 1.00

iik & jik 2 0 0.00 1.25
(AB)
jki & Kji 2 1 1.00 0.00 1.00 2.00
(AC)
kij & ikj 2 1 0.00 0.25 0.25 0.50
(BC)

Core i7 matrix multiply performance

» Miss rates are helpful but not perfect predictors.
« Code scheduling matters, too.

60

2
50 =
/DE Jki & Kji (AC)

3

"E 40

g —¥— jki
‘a —BkKji
8 59 ik
@ —-6—jik
E —— ki
'qg- /®_® ——iKj
(2}

o

(8]

>

(&)

o N
o o

ijk & jik (AB)

50 100 150 200 250 300 350 400 450 500 550 600 650 700 75D
Array size (n)

Concluding observations

» Programmer can optimize for cache performance
— How data structures are organized
— How data are accessed

* Nested loop structure

* You can try to help with blocking, but that’s better left to libraries
and compilers

» All systems favor “cache friendly code”
— Getting absolute optimum performance is very platform
specific
e Cache sizes, line sizes, associativities, etc.
— Can get most of the advantage with generic code
« Keep working set reasonably small (temporal locality)
» Use small strides (spatial locality)

