
Fabián E. Bustamante, 2007

Machine-Level Prog. V – Miscellaneous Topics

Today
! Buffer overflow
! Extending IA32 to 64 bits

Next time
! Memory

2

Internet worm and IM war

! November, 1988
–  Internet Worm attacks thousands of Internet hosts.
–  How did it happen? Three ways to spread

•  Copy itself into trusted hosts through rexec/rsh
•  Use sendmail to propagate, through a hole in its debug mode
•  And the most effective?

! July, 1999
–  Microsoft launches MSN Messenger (IM system).
–  Messenger clients can access popular AOL Instant

Messaging Service (AIM) servers

AIM!
server!

AIM!
client!

AIM!
client!

MSN!
client!

MSN!
server!

3

Internet worm and IM war (cont.)

! August 1999
–  Mysteriously, Messenger clients can no longer access AIM

servers.
–  Microsoft and AOL begin the IM war:

•  AOL changes server to disallow Messenger clients
•  Microsoft makes changes to clients to defeat AOL changes.
•  At least 13 such skirmishes.

–  How did it happen?

! The Internet worm and AOL/Microsoft war were both
based on stack buffer overflow exploits!

•  many Unix functions do not check argument sizes.
•  allows target buffers to overflow.

/* Get string from stdin */
char *gets(char *s)
{
 int c;
 char *dest = s;
 int gotchar = 0;
 while ((c = getchar()) != ‘\n’ && c != EOF) {
 *dest++ = c;
 gotchar = 1;
 }
 *dest++ = '\0';
 if *c == EOF && !gotchar)

 return NULL;
 return s;
}

4

String library code

! Implementation of Unix function gets
–  No way to specify limit on number of characters to read

! Similar problems with other Unix functions
–  strcpy: Copies string of arbitrary length
–  scanf, fscanf, sscanf, when given %s conversion specification

No bounds checking!

5

Vulnerable buffer code

int main()
{
 printf("Type a string:");
 echo();
 return 0;
}

/* Echo Line */
void echo()
{
 char buf[4]; /* Way too small! */
 gets(buf);
 puts(buf);
}

6

Buffer overflow executions

unix>./bufdemo
Type a string:123
123

unix>./bufdemo
Type a string:12345
Segmentation Fault

unix>./bufdemo
Type a string:12345678
Segmentation Fault

7

Buffer overflow stack

echo:
 pushl %ebp # Save %ebp on stack
 movl %esp,%ebp # Set new frame pointer

 pushl $ebx # Save %ebx
 subl $20,%esp # Allocate space on stack

 leal -12(%ebp), %ebx # Comp buf as %ebp-12
 movl %ebx, (%esp) # Store buf at stack top
 call gets # Call gets
 movl %ebx, (%esp) # Store buf at stack top
 call puts # Call puts
 addl $20, %esp # Deallocate 20B
 popl %ebx # Restore %ebx
 popl %ebp # Restore %ebp
 ret # Return

/* Echo line */
void echo()
{
 char buf[4]; /* Way too small! */
 gets(buf);
 puts(buf);
}

Return address!
Saved %ebp

[3] [2] [1] [0] buf

%ebp
Saved %ebx

Stack
frame
for caller

8

Buffer overflow stack example

Return address!
Saved %ebp

[3] [2] [1] [0] buf

%ebp
Saved %ebx

Stack
frame
for caller

Input = “123”

Return address!
Saved %ebp

[3] [2] [1] [0] buf

%ebp
Saved %ebx

Stack
frame
for caller

00 33 32 31

No Problem!

9

Buffer overflow stack example

Return address!
Saved %ebp

[3] [2] [1] [0] buf

%ebp
Saved %ebx

Stack
frame
for caller

Input = “12345”

Return address!
Saved %ebp

[3] [2] [1] [0] buf

%ebp
Saved %ebx

Stack
frame
for caller

34 33 32 31

Old %ebx gone!

scratched

10

Buffer overflow stack example

Return address!
Saved %ebp

[3] [2] [1] [0] buf

%ebp
Saved %ebx

Stack
frame
for caller

Input = “123456789”

Return address!
Saved %ebp

[3] [2] [1] [0] buf

%ebp
Saved %ebx

Stack
frame
for caller

34 33 32 31

Old %ebx and %ebp gone!

Caller cannot reference its local variables
and parameters

scratched

38 37 36 35

11

Buffer overflow stack example

Return address!
Saved %ebp

[3] [2] [1] [0] buf

%ebp
Saved %ebx

Stack
frame
for caller

Input = “1234567891234”

Return address!
Saved %ebp

[3] [2] [1] [0] buf

%ebp
Saved %ebx

Stack
frame
for caller

34 33 32 31

Old %ebx, %ebp and return address gone!

Return to where?

scratched

38 37 36 35

32 32 31 39

Buffer overflow stack

12

% objdump –d bufdemo

08048444 <echo>:
 8048444: 55 push %ebp
 8048445: 89 e5 mov %esp,%ebp
 8048447: 53 push %ebx
 8048448: 83 ec 24 sub $0x24,%esp
 804844b: 8d 5d f4 lea -0xc(%ebp),%ebx
 804844e: 89 1c 24 mov %ebx,(%esp)
 8048451: e8 fa fe ff ff call 8048350 <gets@plt>
 8048456: 89 1c 24 mov %ebx,(%esp)
 8048459: e8 22 ff ff ff call 8048380 <puts@plt>
 804845e: 83 c4 24 add $0x24,%esp
 8048461: 5b pop %ebx
 8048462: 5d pop %ebp
 8048463: c3 ret

$ gdb bufdemo)
...done.
(gdb) break *0x804844e
Breakpoint 1 at 0x804844e
(gdb) break *0x8048456
Breakpoint 2 at 0x8048456

$ gcc -O1 -D_FORTIFY_SOURCE=0 -fno-stack-protector -o bufdemo
echo.c bufdemo.c

Buffer overflow stack

13

(gdb) run
Starting program: /home/fabianb/eecs213/bufdemo

Breakpoint 1, 0x0804844e in echo ()
(gdb) print /x *(unsigned *)$ebp
$1 = 0xbffff428
(gdb) n
Single stepping until exit from function echo,
which has no line number information.
Type a string: 123

Breakpoint 2, 0x08048456 in echo ()
(gdb) print /x *(unsigned *)$ebp
$2 = 0xbffff428

Buffer overflow stack

14

(gdb) run
The program being debugged has been started already.
Start it from the beginning? (y or n) y

Starting program: /home/fabianb/eecs213/bufdemo

Breakpoint 1, 0x0804844e in echo ()
(gdb) print /x *(unsigned *)$ebp
$3 = 0xbffff428
(gdb) n
Single stepping until exit from function echo,
which has no line number information.
Type a string: 1234567890123

Breakpoint 2, 0x08048456 in echo ()
(gdb) print /x *(unsigned *)$ebp
$4 = 0xbfff0033

15

Malicious use of buffer overflow

! Input string contains byte representation of executable code
! Overwrite return address with address of buffer
! When bar() executes ret, will jump to exploit code

void bar() {
 char buf[64];
 gets(buf);
 ...
}

void foo(){
 bar();
 ...
}

Stack !
after call to
gets()

B!

return!
address!

A!

foo
stack
frame!

bar
stack
frame!

B!

exploit!
code!

pad!
data !

written!
by!

gets()

16

Exploits based on buffer overflows

! Buffer overflow bugs allow remote machines to
execute arbitrary code on victim machines.

! Internet worm
–  Early versions of the finger server (fingerd) used gets() to

read the argument sent by the client:
•  finger fabianb@cc.gatech.edu

–  Worm attacked fingerd server by sending phony argument:
•  finger “exploit-code padding new-return-
address”

•  exploit code: executed a root shell on the victim machine with a
direct TCP connection to the attacker.

17

Exploits based on buffer overflows

! Buffer overflow bugs allow remote machines to
execute arbitrary code on victim machines.

! IM War
–  AOL exploited existing buffer overflow bug in AIM clients
–  exploit code: returned 4-byte signature (the bytes at some

location in the AIM client) to server.
–  When Microsoft changed code to match signature, AOL

changed signature location.

18

Email from a supposed consultant
Date: Wed, 11 Aug 1999 11:30:57 -0700 (PDT)
From: Phil Bucking <philbucking@yahoo.com>
Subject: AOL exploiting buffer overrun bug in their own software!
To: rms@pharlap.com

Mr. Smith,

I am writing you because I have discovered

something that I think you might find
interesting because you are an Internet
security expert with experience in this area.
I have also tried to contact AOL but received
no response.

I am a developer who has been working on a revolutionary new instant
messaging client that should be released later this year.
...
It appears that the AIM client has a buffer overrun bug. By itself
this might not be the end of the world, as MS surely has had its share.
But AOL is now *exploiting their own buffer overrun bug* to help in
its efforts to block MS Instant Messenger.
....
Since you have significant credibility with the press I hope that you
can use this information to help inform people that behind AOL's
friendly exterior they are nefariously compromising peoples' security.

Sincerely,
Phil Bucking
Founder, Bucking Consulting
philbucking@yahoo.com

Later determined to be from MS

19

Other exploits based on buffer overflows

! Code red worm 2001
–  Exploiting vulnerability in Microsoft’s Internet Information

Service 2001
–  On July 19, 2001 – 359,000 infected hosts

! SQL Slammer worm 2003
–  Same with Microsoft’s SQL Server 200

! Hacks to run unofficial software in Xbox, PS2 and Wii
without needing hardware modification 2003
–  Twilight hack – exploiting buffer overflow (in The legend of

Zelda: Twilight Princess) in the Wii

20

System-level protection

! Stack randomization
–  At start of program, allocate random amount of stack space
–  Makes it difficult to predict beginning of inserted code

–  Brute force solution – “nop sled” – keep adding nop before the
exploit code

#include <stdio.h>

int main()
{
 int local;
 printf("local at %p\n", &local);
 return 0;
}

fabianb@eleuthera:~$./stackAddress
local at 0x7ffff296f6cc
fabianb@eleuthera:~$./stackAddress
local at 0x7fff764124fc
fabianb@eleuthera:~$./stackAddress
local at 0x7fffe48e4afc
fabianb@eleuthera:~$./stackAddress
local at 0x7fff4893664c

1.  echo:
2.  pushl %ebp
3.  movl %esp, %ebp
4.  pushl %ebx
5.  subl $36, %esp
6.  movl %gs:20, %eax
7.  movl %eax, -12(%ebp)
8.  xorl %eax, %eax
9.  leal -20(%ebp), %ebx
10.  movl %ebx, (%esp)
11.  call gets
12.  movl %ebx, (%esp)
13.  call puts
14.  movl -12(%ebp), %eax
15.  xorl %gs:20, %eax
16.  je .L9
17.  call __stack_chk_fail

21

System-level protection

! Stack corruption detection
–  Detect when there has been an out-of-bound write
–  Store a canary value (randomly generated) in stack frame

between any local buffer and rest of the stack
–  To run overflow example, compile with -fno-stack-protector

Read value from a
special, read-only
segment in memory

Store it on the stack at
offset -12 from %ebp

Check the canary is fine
using xorl (0) if the two
values are identical

System-level protection

! gcc -O1 -S -D_FORTIFY_SOURCE=0 echo.c

! gcc -O1 -S -D_FORTIFY_SOURCE=1 echo.c

22

echo:
 pushl %ebp
 movl %esp, %ebp
 pushl %ebx
 subl $36, %esp
 movl $4, 4(%esp)
 leal -12(%ebp), %ebx
 movl %ebx, (%esp)
 call __gets_chk
 movl %ebx, (%esp)
 call puts
 addl $36, %esp
 popl %ebx
 popl %ebp
 ret

echo:
 pushl %ebp
 movl %esp, %ebp
 pushl %ebx
 subl $36, %esp
 leal -12(%ebp), %ebx
 movl %ebx, (%esp)
 call gets
 movl %ebx, (%esp)
 call puts
 addl $36, %esp
 popl %ebx
 popl %ebp
 ret

System-level protection

! Part of Stack Smashing Protector (SSP)
–  A debugging/security extension for GCC
http://gcc.gnu.org/ml/gcc-patches/2004-09/msg02055.html

23

#undef gets

char *
__gets_chk(char * __restrict buf, size_t slen)
{
 char *abuf;
 size_t len;

 if (slen >= (size_t)INT_MAX) return gets(buf);
 if ((abuf = malloc(slen + 1)) == NULL)
 return gets(buf);
 if (fgets(abuf, (int)(slen + 1), stdin) == NULL)
 return NULL;

 len = strlen(abuf);
 if (len > 0 && abuf[len - 1] == '\n')
 --len;
 if (len >= slen) __chk_fail();

 (void)memcpy(buf, abuf, len);
 buf[len] = '\0';
 free(abuf);
 return buf;
}

In the current implementation mem{cpy,pcpy,move,set},
st{r,p,nc}py, str{,n}cat, {,v}s{,n}printf and gets functions are
checked this way

24

System-level protection

! Limiting executable code regions
–  Virtual memory is divided into pages
–  Each page can be assigned a read/write/execute control
–  x86 merged read and execute into a single 1-bit flag
–  Since stack has to be readable → executable
–  Now, AMD and Intel after, add executable space protection

•  A NX (for “No eXecute”) bit in the page table

25

Avoiding overflow vulnerability

! Use library routines that limit string lengths
–  fgets instead of gets
–  strncpy instead of strcpy
–  Don’t use scanf with %s conversion specification

•  Use fgets to read the string

/* Echo Line */
void echo()
{
 char buf[4]; /* Way too small! */
 fgets(buf, 4, stdin);
 puts(buf);
}

x86-64: Extending IA32 to 64 bits

! New hardware capacities but same instruction set!
–  32-bit word size is limiting – only 4GB virtual address space

•  A serious problem for applications working on large data-sets
e.g. data-mining, scientific computing

! Need larger word size – next logical: 64b
–  DEC Alpha 1992
–  Sun Microsystems 1995

! The price of backward compatibility
–  Intel & Hewlett-Packard 2001

•  IA64 – a totally new instruction set
–  AMD 2003

•  x86-64 – evolution of Intel IA32 instruction set to 64b; fully
backward compatibility

•  AMD took over and forced Intel to backtrack
•  Intel now offers Pentium 4 Xeon

26

x86-64 overview

! Pointers and long integers are 64b; integer operations
support 8 (b), 16 (w), 32 (l), 64 (q) bits data types

! Set of general purpose regs expanded to 16 (from 8)
! Much of program state is held in these registers,

including up to 6 integer and pointer procedure
arguments

! Conditional operations implemented as conditional
moves

! Floating point operations implemented using register-
oriented instructions rather than stack-based ones

27

28

Data types

! Note pointers (now potentially given access to 264
bytes) and long integers

! Note size of pointers and effect of “long”

C dec Intel Suffix X86-64 size IA32 size

char Byte b 1 1

short Word w 2 2

int Double word l 4 4

long int Quad word q 8 4

long long
int

Quad word q 8 8

char * Quad word q 8 4

float Single prec s 4 4

double Double prec d 8 8

long double Extended prec t 10/16 10/12

29

A simple example

! Some assembly code differences
long int simple_l (long int*xp, long int y)
{
 long int t = *xp + y;
 *xp = t;
 return t;
}

% gcc –O1 –S –m64 simple.c

movq instead of movl

Return value in %rax

No stack frame, arguments
passed in registers

1.   simple_l:
2.   movq %rsi, %rax
3.   addq (%rdi), %rax
4.   movq %rax, (%rdi)
5.   ret

1.   simple_l:
2.   pushl %ebp
3.   movl %esp, %ebp
4.   movl 8(%ebp), %edx
5.   movl 12(%ebp), %eax
6.   addl (%edx), %eax
7.   movl %eax, (%edx)
8.   pop %ebp
9.   ret

% gcc –O1 –S –m32 simple.c

30

Accessing information

! Summary of changes to registers
–  Double number of registers to 16
–  All registers are 64b long

•  Extended %rax, %rcx, %rdx, %rbx, %rsi, %rdi,
%rsp, %rbp

•  New %r8-%r15

–  Low-order 32, 16 and 8 bits of each register can be
accessed directly (e.g. %eax, %ax, %al)

–  For backward compatibility, the second byte of %rax,
%rcx, %rdx, and %rbx can be accessed directly
(e.g. %ah)

! Same addressing forms plus a PC-relative (pc is in
%rip) operand addressing mode
 add 0x200ad1(%rip), %rax

31

Arithmetic instructions and control

! To each arithmetic instruction class seen, add
instructions that operate on quad words with suffix q
addq %rdi, %rsi

! GCC must carefully chose operations when mixing
operands of different sizes

! For control, add cmpq and testq to compare and test
quad words

32

Procedures in x86-64

! Some highlights
–  Up to the first 6 arguments are passed via registers
–  callq stores a 64-bit return address in the stack
–  Many functions don’t even need a stack frame
–  Functions can access storage on the stack up to 128 bytes

beyond current stack pointer value; this is so you can store
information there without altering the stack pointer

–  No frame pointer; references are made relative to stack
pointer

–  There are also a few (6) callee-save registers and only two
caller-save (%r10 and %r11, you can also use argument
passing registers when there are <6 arguments)

Argument passing

! Up to 6 integral arguments can be passed via regs
! The rest using the stack

33

Proc:
 movq 16(%rsp), %r10 # Fetch a4p (64b)
 addq %rdi, (%rsi) # *a1p += a1 (64b)
 addl %edx, (%rcx) # *a2p += a2 (32b)

 addw %r8w, (%r9) # *a3p += a3 (16b)
 movzbl 8(%rsp), %eax # Fetch a4 (8b)
 addb %al, (%r10) # *a4p += a4 (8b)
 ret

void proc(long a1, long *a1p,
 int a2, int *a2p,
 short a3, short *a3p,
 char a4, char *a4p)

{
 *a1p += a1;
 *a2p += a2;
 *a3p += a3;
 *a4p += a4;

}

Oper. size/
Argument #

1 2 3 4 5 6

64 %rdi %rsi %rdx %rcx %r8 %r9

32 %edi %esi %edx %ecx %r8d %r9d

16 %di %si %dx %cx %r8w %r9w

8 %dil %sil %dl %cl %r8b %r9b

Registers are used in an specific order

34

Final observations

! Working with strange code
–  Important to analyze nonstandard cases

•  E.g., what happens when stack corrupted due to buffer overflow
–  Helps to step through with GDB

! Thanks to AMD, x86 has caught up with RISC from
early 1980s!

! Moving from 32b to 64b, more memory needed for
pointers; of course

! Nevertheless, 64b operating systems and applications
will become commonplace

