
SWANS++ User's Guide
by David Choffnes

Last updated: 04/09/07

 I. Introduction
By now, you should have read the SWANS++ project Web page, downloaded the code and used
the installation instructions to install SWANS++. The purpose of this guide is to explain some
of the more important features of SWANS++ and how to use them in your simulations. This is
not intended to be a complete description of SWANS++, or anything close. For implementation
details, read the source, which is generally commented well. If you have questions, you can
always post them on the forum at our SourceForge project page.

II. Configuration
SWANS++ currently supports a large number configuration parameters that can be set at
runtime. For the most part, runtime configurations are provided for the most commonly
changed elements and to leave the rest as part of the compilation unit.

If you've used JiST/SWANS before, you know that simulations are started
(conventionally) by running a “driver” file, i.e., a file located in the jist.swans.driver package.
Each of these files allows one to run a simulation instance by initializing simulated objects,
“gluing” them all together and starting the simulation. We found that writing a separate driver
file for each simulation configuration was quite tedious and redundant, so SWANS++ now
includes a GenericDriver class that attempts to merge all common simulation scenarios into one
file that is easily configurable in terms of environment settings.

The command line proved to be too simple of an interface for controlling these settings.
We currently use XML files to configure runtime parameters for simulations, as demonstrated
in the GenericDriver class. Specifically, we use XML serialization and deserialization of the
JistExperiment class to configure experiments. The JistExperiment class is expected to be used
as a singleton object and thus is accessible staticly from any class in the simulation
environment. This makes it particularly convenient to access simulation configuration data.

Currently, configuration data for all configurable classes is stored in JistExperiment. I've
wrestled with providing subclasses or per-class configuration files, but I think that the single
configuration object is currently the easiest way to go. My experience with embedding
configuration objects inside JistExperiment is that XML deserialization fails. If someone gets
this to work, please contact the lead developer, David Choffnes.

Each configurable setting has a default value specified in JistExperiment. If you want to
use the default value for a setting, simply omit that settings from the XML file that you use to
run a simulation instance. See the included XML files for examples of setting different levels of
simulation detail. Finally, note that the JistExperiment class contains descriptions of each
simulation parameter. For the sake of brevity, I will not repeat them here.

III. Visualization (Ceratias)
Perhaps the most anticipated feature of SWANS++ is the include runtime visualization and
steering tool, Ceratias. As such, most of you will want to visualize your simulations as soon as
you can get it up an running. Before you dive in, take a few moments to read about the design
and implementation of this feature.
 First of all, I created Ceratias not because I'm a visualization expert nor because I like creating
fancy UIs. I created it because I just plain needed it. Let's face it: text-based logging of
simulation events occurring over hundreds (if not more) nodes is way too tedious to process. On
the other hand, it's very easy to check complicated, perhaps cross-node, conditions simply by

looking at how nodes are behaving. Born of necessity, Ceratias is not the be-all or end-all of
visualization tools for simulation. It will not fix your code for you, and it will not visualize
anything unless you explicitly code for it. What Ceratias will do is allow an experienced author
of simulation code to see what was previously obfuscated by endless lines of log output. If used
properly, it will help the developer to find flaws in mobililty models and protocol code. It also
provides a convenient and appealing way to showcase your work to others by showing them
instead of simply telling them about an idea.

Now that I've (hopefully) lowered your expectations sufficiently, let me tell what what
Ceratias does do. Ceratias is a tool for generically visualizing and steering an ongoing
simulation. Let's take these features one at a time.

● Ceratias is generic: It provides basic abstractions for simulation visualization, such as
icons for nodes, coloring of those nodes, animated transmission circles, display of text-
based output and marking of the field (e.g., drawing a persistent circle on the field).
With these abstractions, I have been able to sufficiently instrument mobility models and
routing protocol code so as to efficiently debug and validate their operation.
 Because Ceratias is generic, it does not visualize anything for which it has not been
instrumented. In the initial version of SWANS++, I have instrumented the GPSR, DSR
(ns-2 port) routing protocols. Additionally, I have provided visualization for most (if not
all) of the mobility models.

● Visualization: The visualization window enables access to view the ongoing
simulation. While it is running, you can change the zoom level in addition to toggling
certain visualization features. Running Ceratias in parallel with your simulation will
reduce performance compared to running it “naked.” However, Ceratias allows you to
hide various components of the tool to improve performance. For example, by hiding
the simulation field, you can recover nearly all of the performance overhead from
running the tool. For example, if you want to speed things up, you hide the simulation
field until the simulation time at which you want to take a look at what's going on.
 In future versions of the tool, we will provide the ability to add custom tabs and
visualization abstractions.

● Steering: In short, simulation steering is the ability to change simulation settings at
runtime. Ceratias provides a convenient interface to access the steering functionality
added by SWANS++. Perhaps the most simple feature is to pause and resume the
simulation via Ceratias. This feature actually blocks processing of the simulation event
queue and incurs zero CPU overhead. Other features include starting and stopping of
individual nodes. This, for example, can simulate a car crash. I've included these basic
steering capabilities for now; more advanced ones are currently being tested and will
become public in the future.

● Runtime Interaction: Ceratias shows you the state of the system as it runs. It does not
use or create trace files, though nothing precludes it from doing so. The important point
to remember is that when using Ceratias, what you see is what you get. For instance, as
soon as a routing-protocol problem manifests itself, you can instantly diagnose it and
debug it, without waiting for the simulation to finish (as done with trace-based
visualizations).

Ceratias is under constant development. If you are interested in contributing to this effort,
please contact the lead developer (David Choffnes) before writing any new code--If your code
does not fit my model for visualization, I won't accept it.

Finally, to enable visualization, you must set the “useVisualizer” property of the
JistExperiment object to “true”.

IV. Street Mobility (STRAW)
If using STRAW for your mobility model, please see the STRAW documentation.

