Bits and Bytes

Today

» Why bits?

» Binary/hexadecimal
» Byte representations
» Boolean algebra

» Expressing in C

Fabian E. Bustamante, 2007

Why don‘t computers use Base 107?

» Base 10 number representation
— “Digit” in many languages also refers to fingers/toes
» Of course, decimal (from Latin decimus) , means tenth
— A position numeral system (unlike, say Roman numerals)
— Natural representation for financial transactions
— Even carries through in scientific notation

» Implementing electronically

— Hard to store

« ENIAC (First electronic computer)
used 10 vacuum tubes / digit

— Hard to transmit

* Need high precision to encode
10 signal levels on single wire

— Messy to implement digital logic functions
» Addition, multiplication, etc.

Binary representations

» Base 2 number representation
— Represent 15213,,as 11101101101101,
— Represent 1.20,, as 1.0011001100110011[0011]...,

» Electronic Implementation
— Easy to store with bistable elements
— Reliably transmitted on noisy and inaccurate wires

— > | >
0 1 — 0

3.3V
2.8V

0.5V

0.0V
— Straightforward implementation of arithmetic functions

Byte-oriented memory organization

» Programs refer to virtual addresses
— Conceptually very large array of bytes
— Each byte with its own address
— All addresses — virtual address space

— In Unix and Windows, address space private to particular
“process”

« Program being executed
« Program can manipulate its own data, but not that of others
o Compiler + run-time system control allocation
— Where different program objects should be stored
— Multiple mechanisms: static, stack, and heap
— In any case, all allocation within single virtual address space

How do we represent the address space?

» Hexadecimal notation
» Byte = 8 bits | Hex | Decimal | Binary |

0 0 0000
— Binary 00000000, to 11111111, 1 1 0001

— Decimal: 0,,to 255, 2 2 0010

— Binary is too verbose, Decimal is hard : CA

to convert to/from bit patterns 4 ul ILO0

_ Hexadecimal 00, to FF.q > o

. 6 6 0110

« Base 16 number representation . 7 0111

« Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’ 3 8 1000

« Write FA1D37B,4in C as 0xFA1D37B 9 9 1001

— Or 0xfald37b A 10 1010

B 1 1011

C 12 1100

1100 1001 0111 1011 —> 0xC97B D 13 1101
E 14 1110

F 15 1111

Machine words

» Machine has “word size”
— Nominal size of integer-valued data

— More importantly — a virtual address is encoded by
such a word

* Hence, it determines max size of virtual address space

— Most current machines are 32 bits (4 bytes)
 Limits addresses to 4GB
« Becoming too small for memory-intensive applications
— Newer systems are 64 bits (8 bytes)
« Potentially address = 1.8 X 10"° bytes

— Machines support multiple data formats
» Fractions or multiples of word size
« Always integral number of bytes

Data representations
» Sizes of C Objects (in Bytes)

C Data type 32 bit 64-bit
char 1 1
short int 2 2
int 4 4
long int 4 8
long long int 8 8
char* 4 8
float 4 4
double 8 8
— Portability:

« Many programmers assume that object declared as int
can be used to store a pointer

— OK for a typical 32-bit machine
— Problems on a 64-bit machine

Addressing and byte ordering

» For objects that span multiple bytes (e.g.
integers), we need to agree on two things
— what would be the address of the object?

— how would we order the bytes in memory?

Word-oriented memory organization

- 32-bit 64-bit
@ Addresseg. specify Addr. Bytes = Words
byte locations 0000
. Add
— Address of first byte 0001 ny
in word 888? _— Addr
— Addresses of successive 0004 0000
words differ by 0005 Addr
4 (32-bit) or 8 (64-bit) 0006 0004
0007
0008
0009 Addr
8810 0008 Addr
11 =
0012 0008
0013 Addr
0014 00_12
0015

Byte ordering

» How to order bytes within multi-byte word in memory

» Conventions

— (most) Sun’s, IBMs are “Big Endian” machines
» Least significant byte has highest address (comes last)

— (most) Intel’s are “Little Endian™ machines
» Least significant byte has lowest address (comes first)
» Example
— Variable x has 4-byte representation 0x01234567
— Address given by &x is 0x100

Big Endian 0x100 0x101 0x102 0x103
01l 23 45 67

Little Endian 0x100 0x101 0x102 0x103
67 45 23 01

Reading byte-reversed Listings

» For most programmers, these issues are invisible

» Except with networking or disassembly
— Text representation of binary machine code
— Generated by program that reads the machine code

» Example fragment

Address Instruction Code Assembly Rendition
8048365: 5b pop %ebx
8048366: 8l ¢c3 ab 12 00 00 add $0x12ab, $ebx
804836¢: 83 bb 28 OOV‘)O 00 00 cmpl /$0x0,0x28(%ebx)
» Deciphering Numbers /

— Value: Ox12ab

— Pad to 4 bytes: 0x000012ab

— Split into bytes: 00 00 12 ab

— Reverse: ab 12 00 00

Examining data representations

» Code to print byte representation of data
— Casting pointer to unsigned char * creates byte array

typedef unsigned char *pointer;

void show bytes (pointer start, int len)
{

int i;

for (i = 0; i < len; i++)

printf ("0x%p\t0x%.2x\n",
start+i, start[i]);

printf ("\n");

}

Printf directives:
$p: Print pointer
$x: Print Hexadecimal

show bytes execution example

int a = 15213;
printf ("int a

15213;\n") ;

show bytes ((pointer) &a, sizeof(int));

Result (Linux):

int a = 15213; 0011 1011 0110 1101,
Ox11ffffcb8 0x6d 3 b 6 d16
O0x11ffffcb9 0x3b
Ox11ffffcba 0x00
Ox11ffffcbb 0x00

Representing strings

e Stringsin C
— Represented by array of characters
— Each character encoded in ASCII format
« Standard 7-bit encoding of character set

» Other encodings exist, but uncommon

* Character “0” has code 0x30
— Digit/ has code 0x30+/

char S[6] = "15213";
Linux/Alpha s Sun s

— String should be null-terminated 31 f° | 31

« Final character = 0 35 35

» Compatibility o
— Byte ordering not an issue 33 | oy 33

« Data are single byte quantities 00 | 1 00

— Text files generally platform independent
» Except for different conventions of line termination character(s)!

Machine-level code representation

» Encode program as sequence of instructions
— Each simple operation
 Arithmetic operation
* Read or write memory
« Conditional branch
— Instructions encoded as bytes

« Alpha’s, Sun’s, Mac’s use 4 byte instructions
— Reduced Instruction Set Computer (RISC)

« PC’s use variable length instructions
— Complex Instruction Set Computer (CISC)

— Different machines — different ISA & encodings
* Most code not binary compatible

» A fundamental concept:
Programs are byte sequences too!

Representing instructions

int sum(int x, int y)

{

return x+y;

}

» Sun use 2 4-byte instructions
— Differing numbers in other cases

» PC uses instructions with lengths 1, 2, and 3 bytes
— Mostly the same for NT and for Linux
— NT / Linux not fully binary compatible

STkl 55 |89 E5 18B 145 [0C 103 45 108 |C9 [C3_
WALl 55 (89 E5 8B 145 |0C 103 145 108 15D [C3_
S 81 | C3 (E0 108 [90 102 100 109

Different machines use totally different instructions and encodings

Boolean algebra

» Developed by George Boole in 19th Century

— Algebraic representation of logic
 Encode “True” as 1 and “False” as O
- {01}, 1, & ~, 0, 1)
— | is “sum” operation, & is “product” operation
— ~is “"complement” operation (not additive inverse)
— 0 is identity for sum, 1 is identity for product

Not ~A And A& B OrA|B XorA"B
~| & |0 1 | 10 1 O 1
0|1 O0(0 O O(0 1 O(0 1
110 110 1 111 1 111 O

Application of Boolean Algebra

» Applied to Digital Systems by Claude Shannon
— 1937 MIT Master’s Thesis

— Reason about networks of relay switches
* Encode closed switch as 1, open switch as 0

A&~B
— Connection when
A ~B
o—_ >0 A&~B | ~A&B
~A\/ B

~A&B = AMB

Relations between operations

» DeMorgan’s Laws

— Express & in terms of |, and vice-versa
- A&B = ~(~A|~B)
— A and B are true if and only if neither A nor B is false
- A|B = ~(~A&~B)
— A or B are true if and only if A and B are not both false
» Exclusive-Or using Inclusive Or
- AB = (~A&B)| (A &~B)
— Exactly one of A and B is true
- AB = (A|B)&~(A &B)
— Either A is true, or B is true, but not both

General Boolean algebras

» Boolean operations can be extended to work
on bit vectors

— Operations applied bitwise
01101001 01101001 01101001

& 01010101 | 01010101 ~+ 01010101 =~ 01010101
01000001 01111101 00111100 10101010

» All of the properties of Boolean algebra apply

» Now, Boolean |, & and ~ correspond to set
union, intersection and complement

Representing & manipulating sets

» Useful application of bit vectors — represent finite sets

» Representation
— Width w bit vector represents subsets of {0, ..., w—1}
- a=1if] €A
* 01101001 represents { 0, 3, 5, 6 }
01010101 represents {0, 2, 4,6 } ol111lol1lolol4

» Operations
— & Intersection 01000001 { 0, 6 }
— | Union 01111101{0, 2, 3,4,5,6}
— M Symmetric difference 00111100 { 2, 3,4, 5}
— ~Complement 10101010 {1, 3,5, 7 }

Bit-level operations in C

» QOperations &, |, ~, " available in C
— Apply to any “integral” data type
e long, int, short, char
— View arguments as bit vectors
— Arguments applied bit-wise

» Examples (Char data type)
- ~0x41 --> OxBE

~01000001, --> 10111110,
- ~0x00 --> OxFF
~00000000, --> 11111111,
- 0x69 & 0x55 --> 0x41
01101001, & 01010101, --> 01000001,
- 0x069 | 0O0xb55 --> 0x7D

01101001, | 01010101, --> 01111101,

Logic operations in C — not quite the same

» Logical operations ||, && and ! (Logic OR, AND & Not)

— Contrast to logical operators
* View 0 as “False”
» But anything nonzero as “True”
* Always return O or 1

« Early termination (if you can answer by just looking at first
argument, you are done)

» Examples (char data type)
— 10x41 — 0x00
— 10x00 — 0x01
— 110x41 — 0x01
— 0x69 && 0x55 — 0x01
— 0x69 || 0x55 — 0x01

Shift operations

o Left shift: x <<y

Argument x | 01100010

— Shift bit-vector x left y positions << 3 00010000
« Throw away extra bits on left Log. >> 2 00011000
* Fill with O’s on right Arith. >> 2 | 00011000
¢ nght shift: x >> y Argumentx | 10100010
— Shift bit-vector x right y positions << 3 00010000
« Throw away extra bits on right Log. >> 2 00101000
— Logical shift Arith. >> 2 | 11101000
 Fill with O’s on left
— Arithmetic shift

» Replicate most significant bit on right
» Useful with two’s complement integer representation

— For unsigned data, >> must be logical; for signed data either
could be used but mostly arithmetic

 Which one? Most follow this but not all

Main points

» |It's all about bits & bytes
— Numbers
— Programs
— Text

» Different machines follow different conventions
— Word size
— Byte ordering
— Representations

» Boolean algebra is mathematical basis
— Basic form encodes “false” as 0, “true” as 1

— General form like bit-level operations in C
» Good for representing & manipulating sets

Integer & Boolean algebra

» Integer Arithmetic
- (Z, +,*, -, 0, 1) forms a mathematical structure called “ring”
— Addition is “sum” operation
— Multiplication is “product” operation
— —is additive inverse
— 0 is identity for sum
— 1 is identity for product

» Boolean Algebra

- {({0,1}, |, &, ~, 0, 1) forms a mathematical structure called
“Boolean algebra”

— Oris “sum” operation

— And is “product” operation

— ~is “complement” operation (not additive inverse)
— 0 is identity for sum

— 1 is identity for product

Boolean Algebra = Integer Ring

Commutative A|B =BJ|A A+B = B+A
A&B = B&A A*B = B*A

Associativity (Al B) |C =A|B|C) (A+B)+C = A+(B+C)
(A&B)&C = A& (B&CQC) (A*B)*C = A*(B*C)

Product distributes | A&(B|C) = (A&B)| (A& C) A*B+C) =A*B+B*C

over sum

Sum and product Al0 =A A+0 = A

identities A&1 = A A*1 =A

Zero is product A&0 =0 A*0 =0

annihilator

Cancellation of ~(~A)= A - (—A) = A

negation

Boolean Algebra = Integer Ring

Boolean: Sum
distributes over
product

Al(B&C) = (A|B)&(A|C)

A+(B*C) =
(A+B)*(B+C)

Boolean: AlA=A A+A=A
ldempotency A&A = A A*A=A
Boolean: A|(A&B) = A A+(A*B)=A
Absorption A&(A|B) = A A*(A+B)=A
Boolean: Laws of Al~A =1 A+-A=1
Complements

Ring: Every Al~A=0 A+-A=0
element has

additive inverse

Properties of & and »

» Boolean ring
- ({01}, &, 1,0, 1)
— ldentical to integers mod 2
— Tlis identity operation: I (A) = A

-« ANA=0
» Property: Boolean ring
— Commutative sum A*B = B*A
— Commutative product A&B = B&A
— Associative sum (AAB)AC = AAB*C)
— Associative product (A&B)&C = A& (B &C)
— Prod. over sum A&B"*C) = (A&B)* (B &C)
— 0 is sum identity ArO = A
— 1is prod. identity A&1 = A

— 0 is product annihilator A&0=0
— Additive inverse AMA =0

