
Introduction to Computer Systems

Today:
! Welcome to EECS 213
! Lecture topics and assignments

Next time:
! Bits & bytes
! and some Boolean algebra

Fabián E. Bustamante, 2007

2

Welcome to Intro. to Computer Systems

! Everything you need to know
http://aqualab.cs.northwestern.edu/classes/EECS213/eecs-213-s12.html

! Your instructor: Fabián E. Bustamante
! Your TA: Zach Bischof
! Communication channels:

–  Course webpage
–  Google group
–  Email (subject “EECS343: <helpful comment>”)

! Prerequisites
–  EECS 211 or equivalent
–  Experience with C or C++ - required
–  EECS 311 - useful

3

Course theme

Abstraction is good,
but don’t forget reality!

! Courses have so far emphasized abstraction
–  Abstract data types,
–  asymptotic analysis, …

! Abstractions have limits
–  Especially in the presence of bugs
–  Need to understand underlying implementations

! Useful outcomes from taking this course
–  Become more effective programmers
–  Prepare for later “systems” classes in CS & CE

4

Course perspective

! Most systems courses are builder-centric
–  Operating Systems: Implement portions of an OS
–  Compilers: Write compiler for simple language
–  Networking: Implement and simulate network

protocols
! This course is programmer-centric

–  By knowing more about the underlying system, one
can be more effective as a programmer

•  Write programs that are more reliable and efficient
•  Incorporate features that require hooks into OS

–  We bring out the hidden hacker in everyone

5

Some topics covered

! Programs and data
–  Bits arithmetic, assembly, representation of C control …

! Memory hierarchy
–  Memory technology, memory hierarchy, caches, disks, locality

! Linking & exceptional control flow
–  Object files, dynamic linking, libraries, process control, …

! Virtual memory
–  Virtual mem., address translation, dynamic storage allocation

! Concurrency
–  High level & low-level I/O, threads, …
–  …

! Includes aspects of architecture and OS throughout

6

Course components

! Lectures
–  Higher level concepts

! Labs (4)
–  The heart of the course – in-depth understanding
–  12.5% of grade each
–  Working on teams of 2

! Homework assignments (4)
–  10% of grade

! Exams – midterm & final
–  20% of grade each

7

Lab rationale

! Teach new skills and concepts
–  Data – Computer arithmetic, digital logic

Out: Mar. 30 In: Apr. 10
–  Bomb – Assembly language, using a debugger,

understanding the stack
Out: Apr. 13 In: Apr. 24

–  Malloc – Data layout and organization, space/time
tradeoffs

Out: May 5 In: May 15

–  Shell – Processes, concurrency, process control,
signals and signal handling

Out: May 18 In: May 29

8

Textbooks

! Required
–  Bryant & O’Hallaron, “Computer Systems: A

Programmer’s Perspective”, PH 2010.
! Recommended

–  Kernighan & Ritchie (K&R), “The C Programming
Language, Second Edition”, PH 1988

–  R. Stevens and S. Rago, “Advanced Programming
in the Unix Environment”, 2nd Ed. AW 2005

9

Facilities

! Tlab (Tech F-252, on the bridge to Ford) and
Wilkinson Lab (3rd floor).

! You should all have accounts by now;
problems? contact root
(root@eecs.northwestern.edu)

! Need physical access to labs? Contact Carol
Surma (carol@eecs.northwestern.edu)

10

Policies

! Late policy
–  10% off per day (up to 5 days late)

! Cheating
–  What is cheating?

•  Sharing code: either by copying, retyping, looking at, or
supplying a copy of a file.

–  What is NOT cheating?
•  Helping others use systems or tools
•  Helping others with high-level design issues
•  Helping others debug their code

11

Hello World

! What happens and why when you run “hello”
on your system?

! Goal: introduce key concepts, terminology,
and components

/*hello world*/
include <stdio.h>

int main()
{
 printf(“hello, world\n”);
}

12

Information is bits + context

! “hello.c” is a source code
–  Sequence of bits (0 or 1)
–  8-bit data chunks are called bytes
–  Each byte has an integer value, corresponding to

some character (ASCII, e.g. ‘#’ → 35)
–  Files made up of ASCII char. → text files
–  All other files → binary files (e.g., 35 is a part of a

machine command)
! Context is key

–  Same byte sequence might represent a character
string or machine instruction

13

Programs translated by other programs

! Pre-processing
–  E.g., #include <stdio.h> is inserted into hello.i

! Compilation (.s)
–  Each statement is an assembly language program

! Assembly (.o)
–  A binary file whose bytes encode mach. language instructions

! Linking
–  Get printf() which resides in a separate precompiled object file

Pre-!
processor!

(cpp)!
hello.i Compiler!

(cc1)!
hello.s Assembler!

(as)!
hello.o Linker!

(ld)!
hello hello.c

Source!
program!

(text)!

Modified!
source!

program!
(text)!

Assembly!
program!

(text)!

Relocatable!
object!

programs!
(binary)!

Executable!
object!

program!
(binary)!

printf.o
unix> gcc –o hello hello.c

14

Running Hello

! Running hello

! What’s the shell?
! What does it do?

–  prints a prompt
–  waits for you to type command line
–  loads and runs hello program …

unix> ./hello
hello, world
unix>

15

Hardware organization

Main!
memory!

I/O !
bridge!Bus interface!

ALU!

Register file!CPU!

System bus! Memory bus!

Disk !
controller!

Graphics!
adapter!

USB!
controller!

Mouse!Keyboard! Display!
Disk!

I/O bus! Expansion slots for!
other devices such!
as network adapters!
!

hello executable !
stored on disk!

PC!

Buses: transfer fixed-sized
chunks of data (WORDS)

Pentium: 4B bus

I/O Devices: System
connections to external
world.

Main Mem.: Temporary storage
device. Holds both a program
and the data it manipulates.

CPU: Executes instructions
stored in MM. PC - holds
address of machine-language
instruction from memory

16

Running Hello

“./hello"!

User types "hello"!

Main!
memory!

I/O !
bridge!Bus interface!

ALU!

Register file!

System bus! Memory bus!

Disk !
controller!

Graphics!
adapter!

USB!
controller!

Mouse!Keyboard! Display!
Disk!

I/O bus! Expansion slots for!
other devices such!
as network adapters!
!

PC!

Reading the hello command
from the keyboard

17

Running Hello

Main!
memory!

I/O !
bridge!Bus interface!

ALU!

Register file!

System bus! Memory bus!

Disk !
controller!

Graphics!
adapter!

USB!
controller!

Mouse!Keyboard! Display!
Disk!

I/O bus! Expansion slots for!
other devices such!
as network adapters!
!

hello executable !
stored on disk!

PC!

hello code!

"hello,world\n"!

Shell program loads hello.exe
into main memory

18

Running Hello

Main!
memory!

I/O !
bridge!Bus interface!

ALU!

Register file!

System bus! Memory bus!

Disk !
controller!

Graphics!
adapter!

USB!
controller!

Mouse!Keyboard! Display!
Disk!

I/O bus! Expansion slots for!
other devices such!
as network adapters!
!

hello executable !
stored on disk!

PC!

hello code!

"hello,world\n"!

"hello,world\n"!

The processor executes instructions
and displays “hello…”

19

Caches matter

! System spends a lot of time moving info. around
! Larger storage devices are slower than smaller ones

–  Register file ~ 100 Bytes & Main memory ~ millions of Bytes

! Easier and cheaper to make processors run faster
than to make main memory run faster
–  Standard answer – cache

Main!
memory!
(DRAM)!

Memory!
bridge!Bus interface!L2 cache!

(SRAM)!

ALU!

Register file!
CPU chip!

Cache bus!

System bus! Memory bus!

L1 !
cache!

(SRAM)!

20

Storage devices form a hierarchy

Main memory holds disk !
blocks retrieved from local !
disks.!

Registers!

On-chip L1!
cache (SRAM)!

Main memory!
(DRAM)!

Local secondary storage!
(local disks)!

Remote secondary storage!
(distributed file systems, Web servers)!

Local disks hold files
retrieved from disks on
remote network servers.!

Off-chip L2!
cache (SRAM)!

L1 cache holds cache lines retrieved
from the L2 cache.!

CPU registers hold words retrieved from
cache memory.!

L2 cache holds cache lines
retrieved from memory.!

L0:!

L1:!

L2:!

L3:!

L4:!

L5:!

Smaller,!
faster,!

and !
costlier!

(per byte)!
storage !
devices!

Storage at one level
serves as cache at
the next level

21

Operating system

! OS – a layer of software interposed between
the application program and the hardware

! Two primary goal
–  Protect resources from misuse by applications
–  Provide simple and uniform mechanisms for

manipulating low-level hardware devices

Application programs!

Processor ! Main memory! I/O devices!

Operating system!
Software!

Hardware!

22

OS Abstractions

! Files – abstractions of I/O devices
! Virtual Memory – abstraction for main memory

and I/O devices
! Processes – abstractions for processor, main

memory, and I/O devices

Processor ! Main memory! I/O devices!

Processes!

Files!

Virtual memory!

23

Processes

! OS provides the illusion of a dedicated machine per
process

! Process
–  OS’s abstraction of a running program

! Context switch
–  Saving context of one process, restoring that of another one
–  Distorted notion of time

shell
process!

hello !
process!

Application code!
Time!

Context !
switch!

 Context !
switch!

OS code!
Application code!
OS code!

Application code!

24

Virtual memory

! Illusion that each
process has
exclusive use of
a large main
memory

! Example
–  Virtual address

space for Linux

Kernel virtual memory!

Memory mapped region for!
shared libraries!

Run-time heap!
(created at runtime by malloc)!

User stack!
(created at runtime)!

Unused!
0

Memory!
invisible to!
user code!0xc0000000

0x08048000

0x40000000

Read/write data !

Read-only code and data!

Loaded from  
the hello  
executable file!

printf()
function

0xffffffff

25

Networking

! Talking to other systems
! Network – seen as another I/O device
! Many system-level issues arise in presence of network

–  Coping with unreliable media
–  Cross platform compatibility
–  Complex performance issues

Disk !
controller!

Graphics!
adapter!

USB!
controller!

Mouse!Keyboard! Display!
Disk!

I/O bus!

Expansion slots!

Network!
adapter!

Network!

26

Conclusions

! A computer system is more than just hardware
–  A collection of intertwined HW & SF that must

cooperate to achieve the end goal – running
applications

! The rest of the course will expand on this

