
Resilient Peer-to-Peer Multicast without the Cost

Stefan Birrer and Fabián E. Bustamante

Department of Computer Science, Northwestern University, Evanston, USA

ABSTRACT

We introduce Nemo, a novel peer-to-peer multicast protocol that achieves high delivery ratio without sacrificing end-to-
end latency or incurring additional costs. Based on two simple techniques: (1)co-leadersto minimize dependencies and,
(2) triggered negative acknowledgments (NACKs)to detect lost packets, Nemo’s design emphasizes conceptual simplicity
and minimum dependencies, thus achieving performance characteristics capable of withstanding the natural instability of
its target environment. We present an extensive comparative evaluation of our protocol through simulation and wide-area
experimentation. We contrast the scalability and performance of Nemo with that of three alternative protocols: Narada,
Nice and Nice-PRM. Our results show that Nemo can achieve delivery ratios similar to those of comparable protocols
under high failure rates, but at a fraction of their cost in terms of duplicate packets(reductions> 90%)and control-related
traffic.

Keywords: Resilient Multicast, Peer-to-Peer Multicast, Scalable Multicast

1. INTRODUCTION

Multicast is an efficient mechanism to support group communication applications such as audio and video conferencing,
multi-party games and content distribution. It decouples the size of the receiver set from the amount of state kept at any
single node and potentially avoids redundant communication in the network. Partially in response to the deployment issues
of network-layer multicast,1, 2 a number of protocols recently proposed adopt an alternative peer-to-peer, or application-
layer approach, with all multicast related functionality implemented exclusively at end-systems.3–11

One of the most important challenges of these application-layer protocols is their ability to efficiently handle the high
degree of transiency inherent to their environment.12 As multicast functionality is pushed to autonomous, unpredictable
peers, significant performance loss can result from the end hosts’ higher degree of transiency when compared to routers.
A good indication of transiency is the peers’median session time, wheresession timeis defined as the time between when
a peer joins and leaves the network. Measurement studies of widely used P2P systems have reported median session times
ranging from an hour to a minute.13–15 Achieving high delivery ratios under these conditions, without incurring additional
costs or sacrificing end-to-end latencies has proven to be a difficult task.15, 16

This paper makes three main contributions. First, we introduce Nemo, a novel peer-to-peer multicast protocol that
aims at achieving this elusive goal. Based on two techniques: (1)co-leadersand, (2)triggered negative acknowledgments
(NACKs), Nemo’s design emphasizes conceptual simplicity and minimum dependencies,17 achieving in a cost-effective
manner performance characteristics capable of withstanding the natural instability of its target environment. Nemo’s
approach is aimed at applications, such as real-time audio and video streaming, that can benefit from high delivery ratios
within specific latency bounds, without requiring perfect reliability; a model previously termedresilient multicast.18, 19

Second, we present simulation-based and wide-area experimentations showing that Nemo can achieve high delivery ratios
and low end-to-end latency similar to those of comparable protocols under high failures rates, while significantly reducing
costs in terms of duplicate packets(reductions> 90%)and control related traffic, making the proposed algorithm a more
scalable solution to the problem. Lastly, we describe the use of periodic probabilistic operations for overlay maintenance
and discuss their effectiveness in dealing with highly dynamic environments.

After reviewing background and related work in Section 2, Section 3 outlines Nemo’s approach and presents the
protocol’s design and operational details. We report experimental results in Section 4 and conclude in Section 5.

E-mail: {sbirrer,fabianb}@cs.northwestern.edu

2. RELATED WORK

All peer-to-peer or application-layer multicast protocols organize the participating peers in two topologies: a control
overlay for group membership related tasks, and a delivery tree for data forwarding. Available protocols can be classified
according to the sequence adopted in their construction.3, 20 In a tree-first approach,4, 21 peers directly build the data
delivery tree by selecting their parents from among known peers. Additional links are later added to define the control
topology. With a mesh-first approach,3, 6 peers construct a more densely connected graph (mesh) over which (reverse)
shortest path spanning trees, rooted at any peer, can be built. Protocols adopting an implicit approach7–9 create only a
control topology among the participant peers. Their data delivery topology is implicitly determined by the defined set of
packet-forwarding rules.

Banerjee et al.7 introduce Nice and demonstrate the effectiveness of overlay multicast across large scale networks.
They present the first look at the robustness of alternative overlay multicast protocols under group-membership changes.
Nemo adopts the same implicit approach, and its design draws a number of ideas from Nice. Nemo focuses on resilient
multicast with highly transient population, introducing co-leaders and adopting a periodic probabilistic approach to reduce
the cost of membership operations.

A large number of research projects have addressed reliable and resilient multicast at the network layer.18, 22–24 A
comparative survey of these protocols is given in.25, 26 In the context of overlay multicast, a number of protocols have
been proposed aiming at high resilience.10, 11, 19, 27 ZIGZAG11 improves resilience by separating the control and data
delivery trees between two peers, at every level, with both peers sharing responsibilities in the presence of failures. Yang
et al.27 propose to address failures by proactively choosing backup leaders ahead of time. Nemo’s co-leaders serve a
similar role as replacement leaders. In addition, co-leaders forward the data during the repair interval, which includes the
time until the failure is detected, thus providing an uninterrupted service to the downstream peers. Probabilistic Resilient
Multicast (PRM)19 uses probabilistic randomized forwarding and NACK-based retransmission to improve resilience. In
contrast, Nemo relies only on deterministic techniques for data forwarding improving resilience through the introduction
of co-leaders.

SplitStream28 and CoopNet10 opt for splitting the multicast content across separate trees, thus improving load sharing
and resilience. CoopNet also relies on a centralized organization protocol and adopts Multiple Description Coding to
achieve data redundancy. Nemo is a decentralized peer-to-peer multicast protocol which offers redundancy in the delivery
path with only a single control topology through the addition of co-leaders. Exploring the use of data redundancy is part
of our future work.

Nemo adopts a probabilist approach to reduce the cost of overlay maintenance. Closely related, although in the context
of structured peer-to-peer overlay networks, Mahajan et al.29 proposes to dynamically adjust protocol parameters, such as
heartbeat intervals and grace periods, based on the operating conditions. Nemo’s refinement algorithm could benefit from
their technique by adjusting the refinement interval based on the experienced membership-change rate and the measured
dynamics of the underlying physical network.

3. NEMO’S APPROACH

Nemo follows theimplicit approachto building overlays for multicasting:Leader

Co−leader

Ordinary member

Figure 1. Nemo’s logical organization. The
shape illustrates the role of a peer within a
cluster.

participating peers are organized into clusters based on network proximity∗,
with every peer being a member of a cluster at the lowest layer. Clusters vary
in size betweend and3d − 1, whered is a constant known asdegree.† Each
of these clusters selects aleader that becomes a member of the immediately
higherm layer. In part to avoid dependency on a single node, every cluster
leader recruits a number of co-leaders to form its crew. The process is repeated,
with all peers in a layer being grouped into clusters, crew members selected, and
leaders promoted to participate in the next higher layer. Hence peers can lead
more than one cluster in successive layers of this logical hierarchy. Figure 1
illustrates the logical organization of Nemo.

Our work focuses on improving the resilience of peer-to-peer overlay systems for streaming media multicast.Our
peer-to-peer approach specifically addresses the inherent high degree of transiency of peer populations. The following

∗Although other factors such as bandwidth3, 30 and expected peer lifetime13 can be easily incorporated.
†This is common to Nemo, Nice7 and Zigzag11; the degree bounds have been chosen to help reduce oscillation in clusters.

paragraphs discuss the details of our approach. We begin by explaining the dynamics of the basic tree-based protocol such
as the joining and departure of peers, and briefly discuss Nemo’s probabilistic approach to overlay maintenance. We then
elaborate on the algorithm for data forwarding and retransmission.

3.1. Group Management and Cluster Dynamics

A new peer joins the multicast group by querying a well-known node, the rendezvous point, for the IDs of the members on
the top layer. Starting there and in a iterative manner, the incoming peer continues:(i) requesting the list of members at the
current layer from the cluster’s leader,(ii) selecting from among them who to contact next based on network proximity,
and(iii) moving into the next layer. When the new peer finds the closest leader at the bottom layer, it joins the associated
cluster.

Members can leave Nemo in announced or unannounced manner. Since a common member has no responsibilities
towards other peers, it can simply leave the group after informing its cluster’s leader. A leader, on the other hand, must first
elect a replacement leader for all clusters it owns and inform its own cluster’s leader before leaving. To detect unannounced
leaves, Nemo relies on heartbeats exchanged among the cluster’s peers. After a givengrace period, unreported members
are considered dead and a repair algorithm is initiated. If the failed peer happens to be a leader, the tree itself must be
repaired: the members of the victim’s cluster must elect the replacement leader from among themselves.

To deal with dynamic changes in the underlying network, every peer periodically checks the leaders of the next higher
layer and switches clusters if another leader is closer than the current one (with thresholds used to prevent oscillation).
Similarly, in a continuous process of refinement, every leader checks its highest owned cluster for better suited leaders and
transfers leadership if such a peer exists.

Due to membership changes, clusters may grow/shrink beyond the cardinality bounds defined by the clusters’ degree;
such clusters must be dealt with to guarantee the hierarchical properties of the protocol. Undersized clusters are merged
with others while oversized ones are split into two new ones. Both operations are carried on by the cluster’s leader. If the
size of a cluster falls bellow its lower bound, the cluster leader redirects all cluster members to the leader of a neighbor
cluster. When a cluster’s cardinality exceeds its upper bound, the leader must split it into two new clusters, each of size at
least3k/2. The two new clusters are defined so as to minimize the total sum of path latencies (i.e. the cluster’s diameter).
For this we employ a genetic algorithm31 that yields near optimal results at a fraction of the cost‡ of more thorough
alternatives.

3.2. A Probabilistic Approach to Overlay Maintenance

FORWARD-DATA(msg)
1 R← ∅
2 if leader /∈ msg.sender crew
3 then R← R ∪ leader
4 for eachchild in children
5 do if child /∈ msg.sender crew
6 then R← R ∪ child
7 SEND(msg, R, sender crew ← crewOf(self))
8 if isCrewMember(self) andleader /∈ msg.sender crew
9 then R← ∅

10 R← R ∪ super leader
11 for eachneighbor in neighbors
12 do R← R ∪ neighbor
13 SEND(msg, R, sender crew ← crewOf(leader))

Figure 2. Data Forwarding Algorithm

Cluster split and merge operations can be triggered by each ar-
rival/departure event. While potentially guaranteeing the proto-
col’s operational parameters (such as cluster sizes), thisproactive
approach to overlay management can add significant additional
stress to an already stressed network.16 For most costly main-
tenance operations, such as splitting, merging and refinement,
Nemo relies instead on aperiodic probabilisticapproach where
operations are executed with some probability or, alternatively,
deferred to the next interval. In the presence of high transiency,
many of these operations can not only be deferred, but completely
avoided as follow-up changes may revert a previously triggering
situation. A stream of member departures/failures, for example,
may leave a cluster undersized, triggering a relatively expensive
merge operation. If deferred, a series of subsequent member joins may push the cluster’s cardinality beyond its merge-
triggering bound.

3.3. Data Forwarding

Nemo’s data delivery topology is implicitly defined by the adopted set of packet-forwarding rules. A peer sends a message
to one of the leaders for its layer. Leaders (the leader and its co-leaders) forward any received message to all other peers

‡The algorithm runs incn2 time, with a small constantc, wheren is the size of the cluster.

in their clusters and up to the next higher layer. When forwarding a packet to a given cluster, the forwarding peer must
select the destination peer among all crew members in the cluster. The algorithm is summarized in Fig. 2. It first adds the
leader and the children to the receiver setR, originally empty, if and only if they are not part of the sender’s crew (lines
2-6). Once the receiver set is populated, the message (msg) is forwarded to each receiver inR, using its own crew as the
sending crew for the message. If the forwarding peer is not the leader of its highest layer, but part of the crew, the peer is
responsible for forwarding the message to its neighbors and to the cluster one layer above. As the peer does this on behalf
of its leader, the sender crew must be set accordingly (lines 8-13).

Figure 3 illustrates the data forwarding algorithm using the logical topol-

t0

t1

t2

t3

T
im

e

Figure 3. Data forwarding in Nemo.

ogy from Figure 1; each row in the figure corresponds to one time step. Al-
though we employ leaders for this example, the explanation is also valid when
routing through co-leaders. Each row corresponds to one time step. At time
t0 a publisher forwards the packet to its cluster leader, which in turn, sends it
to all cluster members and the leader of the next higher layer (t1). At time t2,
this leader will forward the packet to all its cluster members, i.e. the members
of its lowest and second lowest layer. In the last step, the leader of the cluster
on the left has to forward the packet to all its members.

The forwarding responsibility is evenly shared among the leaders by al-
ternating the message recipient among them. Thus, in case of a failed crew
member, the remaining crew members can still forward their share of mes-
sages through the tree.

3.4. Data Retransmission

Similar to other protocols aiming at high resilience,19, 22 Nemo relies on sequence numbers and triggered NACKs to
detect lost packets. Every peer piggybacks a bit-mask with each data packet reporting the previously received packets. In
addition, each peer maintains a cache of received packets and a list of missing ones. Thereceiver windowdefines the total
number of cached and listed packets and is set based on the application’s requirements. Once a gap (relative to a peer’s
upstream neighbors) is detected in the packet flow, the absent packets are considered missing after some fixed period of
time. This time is selected to reduce the effect of jitter and processing delays.§ For each missing packet, a NACK is sent
to a peer caching it, and a different timeout is set for retransmission.

RECOVER-DATA(msg)
1 d← DOWNWARD ∪ UPWARD
2 for eachpacket in recent packets
3 do if isSameStream(packet, msg)
4 then if isChild(packet.sender crew)
5 then d← d ∩ ¬ DOWNWARD
6 if isLeader(packet.sender crew)
7 then d← d ∩ ¬ UPWARD
8 FORWARD(msg, direction← d)

Figure 4. Data Recovery Algorithm.

The peer requesting the retransmission may not be the only one missing the
packet. Ideally, the requesting peer should forward the recovered packet to all
other known peers (and only to those) who need it. To achieve this we have
designed an efficient algorithm that, without incurring additional control traffic,
helps us improve latency in delivery for retransmitted packets while reducing the
number of duplicates. The algorithm (sketched in Figure 4) takes advantage of
the fact that, over a reasonably small window of time, a peer sees the packets
from one source flowing in one logical direction. After a peer has detected a
lost packet, it initiates the recovery protocol and decides the direction in which

to forward the recovered packet, if at all. No forwarding would be required if all other peers have successfully received
the packet. Otherwise, the forwarding direction will be decided based on the flow direction of the follow-up packets:
upward/downwardif the source is logically below/above the recovering peer.

The algorithm first sets the forwarding direction bothupward and downward. It then checks all recently received
packets (for-loop, lines 2-7). If the inspected packets belong to the same stream, the algorithm uses the peer’s position with
respect to the packet sender’s crew to deduce the forwarding direction for the recovered packet. If a recently forwarded
packet had a sender from the peer’s successors in the tree, the recovered packets need only be transmitted to the peers
higher up in the tree. Alternatively, when the packet’s sender is an ancestor in the tree, the packet needs only be relayed
downwards. The algorithm helps reduce the number of duplicate packets generated indirectly by packet losses.

§In our current implementation this time is set to twice the round trip time (2 ·RTT) to the farthest crew member.

4. EVALUATION

We have evaluated Nemo’s performance through detailed simulation and in real Internet environment in the PlanetLab
testbed.32 We compare Nemo’s performance to that of three other protocols – Narada,3 Nice7 and Nice-PRM.19 ¶

Our implementations of the alternative protocols closely follow the descriptions from the corresponding literature, and
have been validated by contrasting our results with the published values. However, there are a number of improvements to
the common algorithms, such as the use of periodic probabilistic operations, that while part of Nemo were made available
to all protocols in our evaluations and help explain the performance improvements with respect to those reported in their
original publications.3, 7, 19 We opted for this to isolate the contribution of co-leaders to the overall resilience of the
multicast protocol. By carefully abstracting the protocols’ logic, the difference in the code-base of the wide-area and the
simulator implementations for any given protocol is limited to how the communication between two peers is realized.

The effectiveness of the different protocols is evaluated in terms of performance improvements to the application and the
protocol’s overhead.Delivery Ratio, the ratio of subscribers which have received a packet within a fixed time window, and
connectivity, the percentage of nodes that have received at least one packet on the last 10-seconds interval, intend to capture
reliability improvements.Latencyrepresents the end-to-end delay from source to receivers, including retransmission time,
queueing delay and processing overhead. Protocol’s overhead is measured in terms ofduplicate packets, the number of
duplicate packets per sequence number for all receivers‖.

We ran our simulations using Inet,33 Transit-Stub and AS Waxman34 topologies with 3,072 and 8,192 nodes and
multicast groups of varying sizes ranging between 128 and 4,096 members. Due to space constraints we only report
results based on Inet topologies with 3,072 nodes and a multicast group of 512 members.∗∗ Members are randomly
attached to routers, and a random delay of between 1 and 4 ms is assigned to every link. Each simulation experiment
lasts for 40 minutes (simulation time). All peers join the multicast group by contacting the rendezvous point at uniformly
distributed, random times within the first 200 seconds. Starting at 600 seconds and lasting for about 1200 seconds, each
simulation run has a phase with rapid membership changes. During this time each protocol is exercised under two different
failure rates derived from Xu et al.36 study on networked system failure and related research on resilient multicast.19, 36

A warm-up time of 300 seconds is omitted from the figures. Under ahigh-failure rate, nodes fail independently at a time
sampled from an exponential distribution withmean time to failure (MTTF)equal to 5 minutes, to rejoin shortly after (time
sampled from an exponential distribution withmean time to repair (MTTR)of 2 minutes). The same set of simulations is
also run with alow-failure rate defined by a MTTF of 60 minutes and a MTTR of 10 minutes. The means for each failure
rate are chosen asymmetrically to allow, on average, 5/7 (6/7) of all members to be up during this phase. We generate a
failure event sequence a priori, based on the(MTTF,MTTR) pairs. The same sequence is used for all protocols and all
runs.

For the wide-area experiments we restrict our comparison to Nemo, Nice, and Nice-PRM(3,0.02) with between 60
and 200 end-hosts distributed across 72 PlanetLab sites. We opted for 2% forwarding probability for Nice-PRM, since
this offers the best tradeoff between delivery ratio and rate of duplicate packets. The results presented here are based on
twenty-five runs each, done at different times of day, where each run is a set of three experiments (one per protocol) in
a random order. We inject failures at the high-failure rate used for simulation. Each protocol runs for 30 minutes that
includes a 10-minute period with failures. The failure events are drawn randomly from an exponential distributed with
means set to the(MTTF, MTTR) pair of the high-failure case. The end-to-end delay was estimated using a global time
server, based on an algorithm inspired by Mills’ .37

All experiments were run with payloads of 100 and 1,000 Bytes. We opted for these relatively small packet sizes to
avoid saturation effects in PlanetLab. For simulations, we assume infinite bandwidth per link and only model link delay,
thus the packet size is secondary. We employ a buffer size of 32 packets and a rate of 10 packets per second. This
corresponds to the usage of a 3.2-second buffer, a realistic scenario for applications such as multimedia streaming.

4.1. Evaluation Results
Tables 1 and 2 summarize the results from simulation and wide-area experiments for both low and high failure rates.
Nemo and Nice-PRM, with 2 and 3% probability, achieve comparably high delivery ratio, significantly better than the

¶For Narada we employed the latency-only scheme to construct the overlay. For Nice and Nice-PRM the cluster degree,k, was set
to 3. For Nemo, the cluster degreek and the crew size were set to 3.

‖Packets arrived outside of the delivery window are counted as duplicates, since the receiver has already assumed them lost.
∗∗Comparable results were obtained with the alternative configurations. For the complete set of results please see.35

Table 1.Simulation Results with Low- and High-Failure Rate (512 end hosts).
Protocol Low-Failure Rate High-Failure Rate

Delivery ratio Connectivity Duplicate packets Delivery ratio Connectivity Duplicate packets
Mean (Std) Mean (Std) Mean (Std) Mean (Std) Mean (Std) Mean (Std)

Nemo 1.000 (0.12E-3) 1.0000 (0.02E-3) 0.34 (0.09) 0.998 (0.89E-3) 0.9998 (0.21E-3) 3.16 (0.29)
Nice-PRM(3,0.01) 0.999 (0.56E-3) 0.9999 (0.12E-3) 6.42 (0.38) 0.993 (1.25E-3) 0.9989 (0.28E-3) 12.47 (1.04)
Nice-PRM(3,0.02) 0.999 (0.36E-3) 0.9999 (0.07E-3) 12.00 (0.66) 0.994 (1.23E-3) 0.9993 (0.22E-3) 18.20 (0.77)
Nice-PRM(3,0.03) 0.999 (0.27E-3) 0.9999 (0.05E-3) 16.74 (0.65) 0.994 (1.01E-3) 0.9993 (0.17E-3) 24.22 (1.82)
Nice 0.999 (0.52E-3) 0.9998 (0.16E-3) 1.29 (0.40) 0.992 (1.95E-3) 0.9975 (1.02E-3) 7.10 (0.71)
Narada 0.950 (38.3E-3) 0.9548 (36.2E-3) 0.00 (0.00) 0.852 (60.3E-3) 0.8534 (57.9E-3) 0.00 (0.00)

Table 2.Wide-Area Results (PlanetLab,∼70 end hosts, 8 Kbps). Statistics include packets with sequence numbers from 6,000-12,000.
Nice-PRM is configure with 3 random peers and 2% probability (PRM(3,0.02)).

Protocol Low-Failure Rate High-Failure Rate
Delivery ratio Duplicate packets Delivery ratio Duplicate packets
Mean (Std) Mean (Std) Mean (Std) Mean (Std)

Nemo 0.996 (0.003) 0.52 (0.27) 0.979 (0.010) 1.27 (0.56)
Nice-PRM 0.997 (0.003) 1.37 (0.15) 0.953 (0.024) 2.02 (0.57)
Nice 0.991 (0.011) 0.30 (0.23) 0.939 (0.032) 1.06 (0.47)

non-resilient alternatives, Nice and Narada. Nemo features the highest delivery ratio with 99.8% under high failure rate
(100% under low failure rate). As the third and sixth columns in Table 1 show, Nemo also offers the highest connectivity
of all compared protocols under both scenarios. In the wide-area, Nemo also outperforms both Nice (93.9%) and Nice-
PRM (95.3%) with a delivery ratio of 98% under high failure rates. Nemo’s high connectivity and delivery ratio are due
to the alternate data paths offered by crew members, as they enable the early detection and retransmission of lost packets
within the allowed timeout interval. Previous work19 accounted link losses in simulation and reported a similar delivery
ratio for Nice-PRM, but a substantial lower delivery ratio for Nice without retransmission. Our simulation results clearly
show that without losses at the network layer, the effectiveness of PRM is only minor for a protocol such as Nice. PRM’s
improvements to Nice’s resilience, however, become clear in the more realistic setting of the wide-area testbed.

The cost of a resilient multicast protocol can be partially measured in terms of duplicate packets. The last columns
for each failure rate in both tables (Tables 1 and 2) show this overheads. Nemo’s approach results in substantially lower
duplicates per sequence number (3.16) than Nice-PRM while providing comparable (and sometimes higher) delivery rates.
Nemo’s advantage holds in the wide-area, where it offers comparable low number of duplicates (1.27 and 0.52 per sequence
number for high and low failure rate, respectively). Under low failure rate the three protocols offer similar delivery ratio,
although Nemo achieves this with a substantially lower rate of duplicate packets (0.52) when compared with Nice-PRM
(1.37). Nemo’s multiple crew members and its retransmission approach help explain these improvements, as the former
results in alternate paths that increase the effectiveness of NACKs and the latter ensures delivery to other peers (potentially)
missing the packet, thus reducing the total amount of retransmissions.

Table 3 shows the wide-area results obtained with a considerable higher data rate of 80 Kbps. The time scale for these
run was reduced by half, in part to minimize their impact on concurrent PlanetLab experiments. While this larger data rate
results in a significant drop on delivery ratio for all protocols, Nemo is able to sustain a considerable higher delivery ratio
than the alternative protocols (twice as much) at very low cost in terms of duplicates, even lower than Nice.

Nemo’s higher resilience with low overhead comes also at no cost in terms of latency, as can be observed in Fig. 5.
The graph shows the cumulative distribution function (CDF) of latency for all received packets under high failure rate
in one of the simulation and one of the wide-area experiments (buffer of 32 packets, which corresponds to a 3.2-second

Table 3.Wide-Area Results (PlanetLab,∼80 end hosts, 80 Kbps). Statistics include the packets during the failure interval. Nice-PRM
is configure with 3 random peers and 2% probability (PRM(3,0.02)).

Protocol Low Failure Rate
Delivery ratio Duplicate packets
Mean (Std) Mean (Std)

Nemo 0.814 (0.124) 12.82 (5.35)
Nice-PRM 0.427 (0.137) 20.71 (8.23)
Nice 0.485 (0.133) 13.87 (3.12)

0.01 0.1 1 10
Latency [s]

0.2

0.4

0.6

0.8

1.0

D
el

iv
er

y
R

at
io

 [%
]

Nemo
Nice
Nice PRM(3,0.01)
Narada

Nice, Nice PRM and Nemo overlap

(a) Simulation - 512 end hosts

0.01 0.1 1 10
Latency [s]

0.2

0.4

0.6

0.8

1.0

D
el

iv
er

y
R

at
io

 [%
]

Nemo
Nice
Nice PRM(3,0.02)

(b) Wide-Area -∼72 end hosts

Figure 5. Latency CDF under high-failure rate.

delay). Nemo introduces alternative paths to improve resilience. These alternative paths, with delays higher than or equal
to the optimal and only choice in Nice, might introduce some latency penalties for packet delivery. As can be observed in
the graph, the advantage of delivering more packets outweighs the potential latency cost, and Nemo suffers no noticeable
additional delays for packets delivered without retransmission as seen on the left side of the plot. The wide-area graph
confirms the trends observed through simulation. We see that the slope of the curve starting at 0.2 seconds latency is
steeper to the right for Nemo, due in part to its fast packet recovery.

5. CONCLUSIONS

We have described Nemo, a highly resilient overlay multicast protocol for media streaming, and demonstrated the effec-
tiveness of its approach through simulation and wide-area experimentation under different stress scenarios. Through the
introduction of co-leaders and the use of triggered NACKs, Nemo achieves its resilience goals without costs in terms of
duplicate packets and control-related traffic, and without sacrificing end-to-end latency. Nemo’s probabilistic approach to
overlay maintenance has shown to help handle the high levels of churn we expect to see in real deployments, while still
resulting in efficiently optimized overlays.

REFERENCES

1. S. E. Deering, “Multicast routing in internetworks and extended LANs,” inProc. of ACM SIGCOMM, August 1988.
2. C. Diot, B. N. Levine, B. Lyles, H. Kassem, and D. Balensiefen, “Deployment issues for the IP multicast service and

architecture,”IEEE Network14, January/February 2000.
3. Y.-H. Chu, S. G. Rao, S. Seshan, and H. Zhang, “A case for end system multicast,”IEEE Journal on Selected Areas

in Communication20, October 2002.
4. J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, and J. W. O’Toole Jr, “Overcast: Reliable multicasting

with and overlay network,” inProc. of the 4th USENIX OSDI, October 2000.
5. P. Francis, “Yoid: Extending the Internet multicast architecture.” http://www.aciri.org/yoid, April 2000.
6. Y. Chawathe,Scattercast: an architecture for Internet broadcast distribution as an infrastructure service. Ph.D.

Thesis, U. of California, Berkeley, CA, Fall 2000.
7. S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable application layer multicast,” inProc. of ACM SIG-

COMM, August 2002.
8. M. Castro, A. Rowstron, A.-M. Kermarrec, and P. Druschel, “SCRIBE: A large-scale and decentralised application-

level multicast infrastructure,”IEEE Journal on Selected Areas in Communication20(8), 2002.
9. S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “Application-level multicast using content-addressable net-

works,” in Proc. of NGC, November 2001.
10. V. N. Padmanabhan, H. J. Wang, and P. A. Chou, “Resilient peer-to-peer streaming,” inProc. of IEEE ICNP, 2003.
11. D. A. Tran, K. A. Hua, and T. Do, “ZIGZAG: An efficient peer-to-peer scheme for media streaming,” inProc. of

IEEE INFOCOM, April 2003.

12. M. Bawa, H. Deshpande, and H. Garcia-Molina, “Transience of peers & streaming media,” inProc. of HotNets-I,
October 2002.

13. F. E. Bustamante and Y. Qiao, “Friendships that last: Peer lifespan and its role in P2P protocols,” inProc. of IWCW,
October 2003.

14. K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy, and J. Zahorjan, “Measurement, modeling and
analysis of a peer-to-peer file-sharing workload,” inProc. of ACM SOSP, December 2003.

15. Y.-H. Chu, A. Ganjam, T. S. E. Ng, S. G. Rao, K. Sripanidkulchai, J. Zhan, and H. Zhang, “Early experience with an
Internet broadcast system based on overlay multicast,” inProc. of USENIX ATC, June 2004.

16. S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Handling churn in a DHT,” inProc. of USENIX ATC, December
2004.

17. T. Anderson, S. Shenker, I. Sotica, and D. Wetherall, “Design guidelines for robust Internet protocols,” inProc. of
HotNets-I, October 2002.

18. X. Xu, A. Myers, H. Zhang, and R. Yavatkar, “Resilient multicast support for continuous-media applications,” in
Proc. of NOSSDAV, May 1997.

19. S. Banerjee, S. Lee, B. Bhattacharjee, and A. Srinivasan, “Resilient multicast using overlays,” inProc. of ACM
SIGMETRICS, June 2003.

20. S. Banerjee and B. Bhattacharjee, “A comparative study of application layer multicast protocols,” 2002. Submitted
for review.

21. D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel, “ALMI: An application level multicast infrastructure,” inProc.
of USENIX USITS, March 2001.

22. S. Paul, K. K. Sabnani, J. C.-H. Lin, and S. Bhattacharyya, “Reliable multicast transport protocol (RMTP),”IEEE
Journal on Selected Areas in Communication15, April 1997.

23. B. N. Levine, D. B. Lavo, and J. J. Garcia-Luna-Aceves, “The case for reliable concurrent multicasting using shared
ack trees,” inACM Multimedia, November 1996.

24. S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and L. Zhang, “A reliable multicast framework for light-weight
sessions and application level framing,”IEEE/ACM Transactions on Networking5, December 1997.

25. B. N. Levine and J. Garcia-Luna-Aceves, “A comparison of reliable multicast protocols,”Multimedia Systems Journal
6, August 1998.

26. D. Towsley, J. F. Kurose, and S. Pingali, “A comparison of sender-initiated and receiver-initiated reliable multicast
protocols,”IEEE Journal on Selected Areas in Communication15, April 1997.

27. M. Yang and Z. Fei, “A proactive approach to reconstructing overlay multicast trees,” inProc. of IEEE INFOCOM,
March 2004.

28. M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh, “Splitstream: High-bandwidth
multicast in cooperative environments,” inProc. of the 19th ACM SOSP, October 2003.

29. R. Mahajan, M. Castro, and A. Rowstron, “Controlling the cost of reliability in peer-to-peer overlays,” inProc. of
IPTPS, February 2003.

30. Z. Wang and J. Crowcroft, “Bandwidth-delay based routing algorithms,” inProc. of IEEE GlobeCom, November
1995.

31. D. E. Goldberg,Genetic Algorithms in Search, Optimization, and Machine Learning, Addison Wesley, January 1989.
32. L. Peterson, T. Anderson, D. Culler, and T. Roscoe, “A blueprint for introducing disruptive technology into the

Internet,” inProc. of ACM HotNets-1, October 2002.
33. C. Jin, Q. Chen, and S. Jamin, “Inet: Internet topology generator,” Technical Report CSE-TR-433-00, U. of Michigan,

Ann Arbor, MI, 2000.
34. E. W. Zegura, K. Calvert, and S. Bhattacharjee, “How to model an internetwork,” inProc. of IEEE INFOCOM, March

1996.
35. S. Birrer and F. E. Bustamante, “Resilient overlay multicast from the ground up,” Tech. Report NWU-CS-03-22,

Northwestern U., July 2003.
36. J. Xu, Z. Kalbarczyk, and R. K. Iyer, “Networked Windows NT system field failure data analysis,” inProc. of PRDC,

December 1999.
37. D. L. Mills, “Improving algorithms for synchronizing computer network clocks,” inProc. of ACM SIGCOMM, August

1994.

