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Abstract

We explore the feasibility of streaming applications over
DHT-based substrates. In particular, we focus our study
on the implications of bandwidth heterogeneity and tran-
siency, both characteristic of these systems’ target envi-
ronment. Our discussion is grounded on an initial evalu-
ation of SplitStream, a representative DHT-based coopera-
tive multicast system.

1. Introduction

The limited deployment of IP Multicast [19, 20] has
led to considerable interest in alternate approaches imple-
mented at the application layer, relying exclusively on end-
systems [23, 16, 2, 15, 30, 8, 13]. Among the proposed end-
system multicast protocols, tree-based systems have proven
to be highly scalable and efficient in terms of physical link
stress, state and control overhead, and end-to-end latency.

Conventional tree-based structures, however, are inher-
ently not well matched to the characteristics of cooperative
distributed environments. Cooperative settings, in which
participating peers contribute resources in exchange for
some service, have been found to be highly dynamic and
heterogeneous in terms of node resource availability and
uptimes [35, 36, 10, 29]. Tree-based multicast structures
are problematically highly dependent on the reliability of
non-leaf nodes and are likely to be bandwidth constrained,
with bandwidth availability monotonically decreasing as
one ascends from the leaves. In addition, in tree-based mul-
ticast systems the burden of data forwarding is carried by
a small fraction of non-leaf nodes, clearly conflicting with
the expectations of a cooperative environment [13].

A number of recently proposed protocols [30, 24, 13, 9]
explicitly address these issues by distributing the forward-
ing load among all participants, thus lowering system de-
pendency on any particular node. While the proposed
techniques can be equally applied to both performance-
based [17, 23, 2, 30, 8] and DHT-based systems [34, 37,

31], the latter path is particularly compelling as the result-
ing DHT substrate could potentially be used by multiple
applications, consequently allowing each to leverage the
manifold advantages of this approach while sharing the to-
tal control overhead.

It is therefore of interest to explore the feasibility of
cooperative multicast applications over DHT-based over-
lays. This paper presents such an analysis focusing, in
particular, on the requirements of media streaming multi-
cast applications and the implications of the high degree of
transiency and widely heterogeneous bandwidth availabil-
ity among participating nodes in these systems’ target en-
vironments [5, 36]. A closely related work by Bharambe et
al. [5] studies the impact of heterogeneous bandwidth limi-
tation, focusing on the implications of such constraints on a
representative DHT-based multicast protocol, Scribe [15].
Our work complements and extends their effort by also
considering the implications of high degrees of churn in
peer populations in the context of cooperative DHT-based
protocols. While our analysis is grounded on an evalua-
tion of SplitStream [13], a representative and relatively ma-
ture cooperative DHT-based system, we believe most of our
conclusions and some of our proposed solutions apply well
to other DHT-based protocols.

Our study was prompted by our wide-area experimenta-
tion with this class of systems [6]. For the purpose of this
analysis, however, we resort to simulations as this allows us
to observe the dynamic behavior of these protocols in con-
trolled and repeatable settings. Our discussion is structured
around the aforementioned issues and the performance de-
mands of this class of applications – bandwidth-intensive
streaming multicast. Our evaluation indicates that Split-
Stream’s performance and its ability to handle transiency
and honor bandwidth constraints appear to be limited by
its design choice to build on a DHT substrate. Throughout
the paper, we discuss possible ways to address some of the
identified problems in DHT-based multicast.

We begin by providing some necessary background on
the evaluation framework in Section 2 and the evaluated
protocols in Section 3. In Sections 4 and 5, we describe the



experimental setup and present our analysis of the feasibil-
ity of DHT-based, bandwidth-demanding, streaming appli-
cations. We present related work in Section 6, discuss our
findings in Section 7 and conclude in Section 8.

2. Evaluation Framework

Our evaluation is based on the requirements of stream-
ing multicast applications, where one or many sources
stream audio/video data, at several hundred kilobits per
seconds, to a potentially large set of heterogeneous re-
ceivers with small, bounded delivery latencies [16].

We analyze the implications of the high degree of tran-
siency and the wide range of resource availability among
peer populations in these systems’ target environments.
Subscribers in such settings may join and leave the session
at any given time, or even fail. Median session times have
been reported to range from a few hours down to, more
commonly, a few minutes [35, 10, 22, 16, 36]. Highly tran-
sient peer populations force protocols to constantly probe
and reevaluate peers and, if needed, repair their distribu-
tion topology. Control messages associated with such tasks
could easily consume a substantial fraction of the peers’
resources. Peer resource availability, including bandwidth
capacity, have been found to differ by over four orders of
magnitude [35, 36, 5, 29]. Adequate placing of nodes in
the hierarchy based on available bandwidth is a non-trivial
task, additionally complicated by the transiency of the pop-
ulation and the dynamic nature of bandwidth availability.

Addressing such degrees of transiency and heterogene-
ity without sacrificing application performance is a critical
challenge for the end-system multicast approach in general,
and media streaming applications in particular.

3. Background

In order to set the stage for the following discussion,
this section provides an overview of SplitStream and the
underlying protocols upon which it builds.

3.1. SplitStream

Addressing the unsuitability of conventional tree-based
protocols to cooperative environments, Castro et al. [13]
propose to split the multicast content intok stripes and to
multicast each stripe using a separate multicast tree, where
an interior node in one tree is a leaf node in all others. By
more evenly distributing the forwarding load among partic-
ipating peers, this approach avoids the problem of under-
provisioned interior nodes. Additionally, it increases the
robustness of the system to node failures as the disjoint
trees reduce the dependency on any single node. In an at-
tempt to control inbound bandwidth consumption, a peer

joins at most as many stripes as its bandwidth capacity per-
mits. In [13], the authors present two alternative policies
for constructing SplitStream’s multiple trees – one vari-
ant that emphasizes fairness, and a second that trades per-
fect fairness for improved performance. The performance-
optimized variant uses outdegrees limited to the avail-
able bandwidth capacity. The SplitStream implementa-
tion by Castro et al. relies on Scribe [15], an application-
level group communication protocol built on Pastry [34], a
proximity-aware, structured peer-to-peer routing protocol.

3.2. Pastry

Every peer in Pastry [34] is assigned a randomly unique
128-bit node identifier (nodeId). NodeIds are thus uni-
formly distributed in the circular identifier space formed
by all possible identifiers. A nodeId can be expressed as a
sequence of digits in base2b, whereb is a configuration pa-
rameter with a typical value of 3 or 4. Given a message and
an associated 128-bit key, Pastry routes the messages to the
node with the numerically closest nodeId. In order to route
messages, each node maintains a routing table consisting
of log2b N rows and2b columns, where the node associ-
ated with each entry in rowr of the routing table shares
the firstr digits with the local node’s nodeId. A message is
routed to a node whose nodeId shares a prefix with the mes-
sage key of at least one digit longer than the current node’s
nodeId. If no such node exists, the message is routed to a
node whose nodeId shares a prefix with the message iden-
tifier that is as long as the current node’s nodeId, but is nu-
merically closer to the key. Additionally, each node main-
tains a leaf set and a set of neighboring nodes. The leaf
set containsn nodes which are numerically closest to the
local node’s nodeId (l/2 with smaller identifiers andl/2
with larger ones), whereas the neighborhood set consists
of nodes which are closest based on a proximity metric.
While the neighborhood set is not normally used for rout-
ing, the leaf set is used whenever the destination key falls
within the space of the leaf set, to find a node with a numer-
ically closer nodeId. In order to provide routing through
the network, the Pastry overlay requires a consistent map-
ping from keys to overlay nodes and depends on persistent
intermediate nodes for successful message delivery.

Routing application message through a DHT (DHT-
based routing) yields a number of benefits. DHTs provide
robust routing in the presence of link failures. As long as
there exists a path from source to destination through in-
termediate nodes, a message can be delivered even though
the direct Internet connection may be temporarily down,
perhaps as a side effect of BGP route conversions. In ad-
dition, routing through a DHT may allow an application to
take advantage of faster available paths, as routing through
an intermediate node may expose a faster end-to-end path



than the direct route, e.g., as a result of BGP policies for
inter-AS routing. Routing through intermediate nodes, on
the other hand, increases the system load in term of band-
width utilization and may also add extra processing latency
to each forwarded message. Caching of destination IP ad-
dresses would enable an application to route directly with-
out going through the DHT, i.e., routing usingnon-DHT
links, potentially resulting in lower delivery latencies and
lower overall bandwidth consumption at the end hosts. Di-
rect routing to the destination, however, may add network
links that are not part of the underlying DHT, thus giving
up on some of the benefits of robust routing, including node
and path failure detection among others.

3.3. Scribe

The Scribe [15] group communication builds upon Pas-
try to support applications that demand large number of
multicast groups. Each of these multicast groups may con-
sist of a subset of all nodes in the Pastry network. Every
multicast group in Scribe is assigned a random ID (topi-
cId), and the multicast tree for the group is formed by the
union of Pastry routes from each group member to the root,
identified by the topicId. Messages are then multicast from
the root using reverse path forwarding [18]. Since Scribe
relies on the underlying DHT substrate routing table for
data forwarding, it naturally leverages the robustness, self-
organization, locality and reliability properties of Pastry.
As any DHT-based application, Scribe may opt for routing
messages through the DHT or over non-DHT links main-
tained by the Scribe layer.

Scribe also enables higher level protocols to specify
policies that can be used, for example, to enforce outde-
gree requirements [13, 5]. This makes it possible to limit
the nodes’ outdegree, i.e. the number of successors in the
distribution topology, by letting applications deny join re-
quests. Alternatively, in order to increase the general effi-
ciency of the distribution tree, rather than denying a new
request, a protocol may choose to preempt a current suc-
cessor. In heterogeneous environments, this enables push-
ing bandwidth capable nodes up the tree, thus increasing
the overall system performance.

4. Evaluation

We study the feasibility of DHT-based streaming mul-
ticast by analyzing the behavior of a representative system
based on a few key metrics. The performance of streaming
multicast applications is evaluated in terms of delivery la-
tency and delivery ratio.Delivery Latency is defined as the
end-to-end delay (including retransmission time) from the

source to the receivers, as seen by the application. This ac-
counts for path latencies along the overlay hops, as well as
queuing delay and processing overhead at peers along the
path. Delivery Ratio is the ratio of subscribers that have
received a packet within a fixed time window. Disabled
receivers are not accounted for.

The effectiveness of distributing the load among all par-
ticipants is analyzed in terms of physical outdegree.Phys-
ical Outdegreeis defined as the fanout of a node and indi-
cates the number of full rate streams a peer has to support
in the distribution topology. Whenever multicast data is
split into smaller messages and peers only forward part of
them (e.g., SplitStream), the effective outdegree can be a
non-integer value.

The remainder of this section describes our experimen-
tal setup and presents implementation details of the com-
pared protocols.

4.1. Details on Protocol Implementations

For our evaluation, we rely on the implementation of
the protocols used for the same purpose in their original
publications – for both Scribe [15] and SplitStream [13]
we employ FreePastry (version 1.3.2) [21]. To this end,
we ported FreePastry’s communication layer to our Reef
middleware framework [7] for simulation.

Scribe and SplitStream use a leaf set maintenance inter-
val of 60 seconds and a route set maintenance interval of
900 seconds [13]. The outdegree for SplitStream nodes is
limited to the number of stripes for the fair variant [13]. We
evaluate SplitStream with 16 stripes (trees), where each of
the stripes is responsible for forwarding116 of the full data
rate to each client. Thus, an outdegree of one in a Split-
Stream tree corresponds to a physical outdegree of1

16 . Set-
ting SplitStream’s outdegree to 16 yields an effective uti-
lization of one full-rate stream at each node, i.e., a physical
outdegree of one.

In the presence of failures, degraded performance may
result from the time needed to detect and repair failed nodes
in the distribution topology. Moreover, repairing the rout-
ing structure results in additional network traffic which, in
turn, may lead to congestion collapse [33, 11]. In order
to improve the generality of our conclusions, we factor out
the failure detection component, by allowing the evaluated
protocols to detect failed nodes virtually instantaneously,
as well as the effect of control message overhead, by not
modeling bandwidth in our simulation. Given this consid-
erations, we believe the reported findings are generalizable
to other Pastry implementations [33, 11] and, to a large ex-
tent, to other DHT substrates as well.



4.2. Experimental Setup

We ported FreePastry’s communication layer to the Reef
framework. Reef [7] is a middleware framework that sup-
ports the full cycle of experimental research in overlay sys-
tems – from design, through implementation, to evaluation
and analysis. Researches can specify their algorithms in
a well-known object oriented language, Java, leveraging a
rich set of libraries that are part of Reef. For this purpose,
Reef provides a generic interface for access to network ser-
vices such as sending and receiving of messages, as well
as for querying round-trip times and loss rates among other
properties. Reef’s protocol implementations run in simu-
lation and wide-area settings, such as PlanetLab, without
changes to the code base. Reef shortens the development
cycle by removing the burden of implementing commonly
used services and by reducing the complexity of maintain-
ing separate implementations for simulation and wide-area
experimentations. For simulation, Reef relies on SPANS, a
packet-level, event-based simulator. SPANS supports sev-
eral common topology file formats as well as its own ex-
tensible scripting language. The network is modeled as a
set of nodes connected by links, each having a bandwidth
capacity, latency and loss rate. Each of the nodes can be a
router or an end host. An end host differs from a router in
that it has agents (running clients) attached to it. Messages
are routed through the graph built by the nodes and links
using Dijkstra’s shortest path algorithm. Network queues
at the routers use tail-drop buffers to emulate the loss and
delay properties arising from the links’ limited bandwidth
capacity.

We ran our simulations using Brite [28] topologies with
2,000 nodes and a multicast group of 256 members. La-
tency was set according to the node’s/router’s physical dis-
tance; bandwidth and loss rate were not modeled. While
measuring the nodes’ outdegree, we chose not to model
bandwidth and loss rate, to avoid the negative effects
of control traffic. Each simulation experiment lasts for
60 minutes of simulation time, including a warm-up time
of 57 minutes, during which the protocols establish and
optimize their structures. All nodes join the network at
times distributed over the first 30 minutes. Scribe and Split-
Stream are activated after Pastry runs for 10 minutes [13].
Following the warm-up period, each simulation has a 180-
second phase with rapid membership changes. During this
time each protocol is exercised under different failure rates
sampled from an exponential distribution. We vary the
mean time to failure (MTTF)from 1 minute to 2 hours; the
mean time to repair (MTTR)is fixed at 10 minutes. A
session with MTTF of 5 minutes models an environment
where nearly 60% of the peer population fails during the
three minute failure interval. All experiments were run
with a payload of 1000 bytes. We employed a rate of 10
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Figure 1: Physical Outdegree CDF (256 end hosts, no failures). Physical
outdegree defines the bandwidth contribution in terms of full-rate streams
at each node. Since the stream is split into multiple packets and each of
this packet is forwarded in the distribution topology following inherent
forwarding rules, the nodes’ effective bandwidth consumption depends
on the employed forwarding rules and on the nodes’ position(s) within
the distribution topology. Note that an outdegree of one in SplitStream
corresponds to a physical outdegree of1
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packets per second, which corresponds to a data rate of
80 Kbps, a realistic scenario for applications such as multi-
media streaming.

5. Analysis

We structure our analysis around the two identified chal-
lenges for overlay streaming multicast – all overlay mul-
ticast systems must cope with the higher failure rate of
end nodes when compared to routers, while respecting the
nodes’ bandwidth constraints, all without sacrificing appli-
cation performance.

5.1. Bandwidth Constraints

The scalability of an overlay multicast protocol is in part
determined by the forwarding responsibility of each partic-
ipating peer. Figure 1 shows the Cumulative Distribution
Function (CDF) of physical outdegree for the fair variant
of SplitStream and Scribe. The physical outdegree is the
forwarding capacity used at each node in terms of a ba-
sic stream rate, i.e., a physical outdegree of one indicates
that the peer contributes exactly the equivalent of one full
rate stream to the system. We see that this variant of Split-
Stream shares the forwarding load evenly among the par-
ticipating peers with most of them having a physical outde-
gree of one. In homogeneous environments, such as some
corporate settings [11], this improves on the scalability of
conventional tree-based multicast, such as Scribe, where
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Figure 2: Physical Outdegree CDF (SplitStream, 256 end hosts, no fail-
ures). This graph shows the physical outdegree of the nodes when routing
all data messages through the DHT substrate and when using non-DHT
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only a subset of the nodes, i.e., the interior nodes, share the
total forwarding load.

In heterogeneous environments, nodes may have differ-
ent inbound and outbound bandwidth constraints. In or-
der to control their inbound bandwidth consumption, nodes
participating in a SplitStream multicast tree may subscribe
to a subset of the available stripes. Limiting the number of
stripes a node is subscribed to, however, will also reduce
the robustness gained through the usage of multiple dis-
tribution trees. Additionally, as DHT-based systems may
require a node to subscribe to a particular stripe defined by
their node prefix [13], employed encoding schemes are po-
tentially constrained.

The outbound bandwidth consumption of a Split-
Stream/Scribe node can be controlled by limiting the num-
ber of successors in the distribution tree. Honoring outgo-
ing bandwidth constraints, however, may force these pro-
tocols to utilize overlay links that are not part of the under-
lying DHT. In fact, previous studies have found that non-
DHT links make over 40% of all links used by Scribe in
bandwidth limited homogeneous environments, and over
80% in heterogeneous environments [5].

Using these non-DHT links requires the protocol to use
an independent algorithm on top of the DHT substrate to
maintain these links, monitor dynamic bandwidth avail-
ability, and detect node failures, thus incurring additional
control overhead. This additional control traffic, which is
particular to an application, negates some of the benefits of
the DHT-based approach, specifically the sharing of control
overhead across multiple applications.

Routing through the DHT, on the other hand, adds extra
forwarding load on intermediate nodes, thus reducing the
scalability of the protocol. Figure 2 shows the CDF of the
physical outdegree for overlay nodes when all messages are
being routed through the DHT substrate or over non-DHT
links. Routing through the DHT adds extra forwarding load
on intermediate nodes and results in 10% of the nodes hav-
ing an outdegree larger than 6. Higher layer protocols are
not aware of this additional forwarding load introduced by
DHT-based routing, as this traffic is routed in the underly-
ing DHT substrate without involving the application.

Heterogenous environments may also result in deep
Scribe distribution trees, in part because of the disconnect
between bandwidth capacity and nodeId assignment [5].
In general, a significantly longer distribution path may re-
sult in higher performance loss. While assigning nodeIds
based on the node’s bandwidth constraints may help reduce
the median tree depth [5], it can also adversely affect the
routing properties of DHTs [4]. The key-based routing of
DHT substrates conflicts with the performance optimiza-
tion goals of multicast schemes, such as maximizing avail-
able bandwidth and minimizing end-to-end latency. Unfa-
vorably, current systems account for identifier prefix at first
and for proximity to break ties at second when building the
routing tables [34].

SplitStream achieves a more even distribution of for-
warding load among participating peers by splitting the
multicast content intok stripes and multicasting each stripe
using a separate multicast tree. Each of these trees uses
a Scribe distribution topology rooted at a randomly lo-
cated node that is defined by the topicId. As messages
are multicast from the root using reverse path forwarding,
publishing incurs an additional source-to-root path delay
penalty. Since the root node of the multicast tree is se-
lected based solely on the node’s nodeId, an overloaded
and/or bandwidth-limited node could potentially reduce the
overall group performance. Additionally, using multiple
interior-node-disjoint trees leads to only suboptimal solu-
tions in terms of end-to-end latency, since a node’s par-
ent can only be recruited from a subset of all participat-
ing peers, emphasizing fairness over performance. Fig-
ure 3 (a) illustrates the impact of using multiple interior-
node-disjoint trees. SplitStream using 16 stripes increases
the delivery latency by 98% compared to Scribe. We expect
this effect to be less pronounced with very large groups,
due to the higher density of participating peers.

A 16-stripe SplitStream multicast session utilizes 16
Scribe multicast trees. Each of these trees has been as-
signed uniformly distributed identifiers and, for each Scribe
tree, the node with the closest node identifier will serve as
the root of the corresponding multicast tree. A client sub-
scribing to the SplitStream session will receive messages
from all the geographically distributed sources together and
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Figure 3: Delivery Latency (256 end hosts, no failures). SplitStream uses
16 strips to disseminate the multicast data.

will consequently incur an extra variance defined by the ge-
ographical distribution of these root nodes. This variance
is larger than when the messages are streamed from a sin-
gle source, as with Scribe. Thus, SplitStream’s delivery
latency variance is mainly defined by the mean message
delivery latency difference among the various root nodes
and not by the variance of message delivery latency within
one of its trees. Figure 3 (b) illustrates this effect well. The
figure shows the standard deviation of delivery latency for
both Scribe and SplitStream with 16 stripes. SplitStream
shows 900% increase in the standard deviation of message
delivery latency with respect to Scribe.

5.2. Transiency

Measurement studies of widely used peer-to-peer sys-
tems have reported median session times, i.e. the time from
the node’s joining to its subsequent leaving the system,
ranging from two hours [35] down to a minute [10, 22, 16,
36]. Efficiently handling this high level of transiency, while
still delivering good performance to the application, has
proven to be a difficult task [33, 16, 27, 11, 26, 32]. While
Pastry has been successfully applied to less transient envi-
ronments [38], early Pastry implementations [21] in partic-
ular have shown to perform poorly under medium to high
churn with a median session time less than 20 minutes [33].
Newer protocols, such as MSPastry [11] and Bamboo [33],
have been designed to avoid congestion collapse under high
transiency. To avoid congestion collapse, however, these
protocols trade performance for less control overhead, re-
sulting in an increased relative delay penalty under high
churn. Specifically, the relative delay penalty for messages
under transiency with a median session time of 5 minutes is
more than 100% higher than with a median session time of
2 hours [11]. While some applications may not be sensitive
to this extra delay, streaming multicast application require
low delivery latency in order to timely detect and recover
missing packets.
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Figure 4: Transiency (SplitStream, 256 end hosts). Note that the MTTR
was fixed at 10 minutes for the different failure rates.

Churn may negatively affects the ability of a multicast
protocol to deliver application messages. Figure 4 illus-
trates SplitStream’s robustness to node failures with differ-
ent degrees of transiency in terms of delivery ratio. Note
that SplitStream delivers about 95% percent of the packets
with a median session time of 2 hours, a level of transiency
expected from corporate settings. With higher failure rates,
however, the delivery ratio significantly declines. In par-
ticular, the delivery ratio for median session times rang-



ing from 5-10 minutes, a degree of churn representative for
streaming multicast [36], lies between 50% and 75%. It is
possible that DHT resilience could be improved by adopt-
ing techniques from performance-based resilient multicast
systems [3, 40, 8].

Large routing tables help reduce the total end-to-end la-
tency, thus DHT substrates generally prefer routing tables
with tens to, more commonly, hundreds of neighbors. High
degree of transiency, on the other hand, may result in a
storm of routing table updates with their associated con-
trol overhead [25, 11], presenting a problem especially for
large routing tables. Since reacting to each membership
update could result in congestion collapse, in order to re-
duce bandwidth consumption one could opt for ignoring
routing table updates. This, however, may degrade the ap-
plication performance as the distribution topology diverges
from the current optimal tree according to the routing ta-
bles. It seems that protocols with smaller average number
of neighbors provide higher resilience to churn than those
with larger routing tables.

A mostly ignored aspect of highly transient environ-
ments is the setup time for joining peers. As a large number
of nodes join a session over a relatively short time period,
it is possible that techniques designed to control the im-
pact of high transiency will have a negative effect on the
quality of service perceived by new peers. Previous stud-
ies found the median join time for nodes in a Pastry system
with high transiency (5 minutes median session time) larger
than 10 seconds [11]. This median join or setup time could
be improved through a hierarchical approach, where peers
with longer expected lifetime form a more stable core net-
work to which newcomers could join [10]. Of course, the
adoption of a hierarchical scheme may come at a cost on
application performance, as more stable routes are chosen
over newer, more desirable ones.

6. Related Work

Peer-to-Peer multicast streaming applications have re-
cently drawn significant attention. Chu et al. [16] report
on their experience deploying a video broadcast service
for various events, such as live conference broadcast. Sri-
panidkulchai et al. [36] analyze the feasibility of supporting
large-scale groups using application end-point architecture
and report that, in most scenarios, end hosts have sufficient
resources to support peer-to-peer multicast. In a closely
related study, Bharambe et al. [5] analyze the impact of
heterogeneous bandwidth constraints on DHT-based multi-
cast protocols and conclude that Scribe tends to create deep
unbalanced distribution trees under these conditions. Our
work extends this study by analyzing the implications of
transiency and bandwidth heterogeneity on the effective-
ness of DHT-based, cooperative multicast approaches.

The performance of DHT-based multicast systems has
been the focus of several studies. Banerjee et al. [1] de-
scribe and analytically compare a set of proposed applica-
tion layer protocols including DHT-based and tree-based
techniques. Castro et al. [14] contrast CAN-style versus
Pastry-style overlay networks using multicast communi-
cation workloads, and conclude that multicast trees built
on Pastry provide higher performance than those using
CAN [31]. Focusing on data-sharing applications, Castro et
al. [12] compare structured and unstructured Gnutella-like
peer-to-peer systems. Our work analyzes the feasibility of
DHT-based systems in the well-defined context of stream-
ing multicast in transient, heterogeneous environments.

Various efforts have been proposed to increase the re-
silience of DHT substrates. Li et al. [25] propose to dynam-
ically adapt the routing tables based on the system’s current
degree of transiency. Castro et al. [11] propose bandwidth-
efficient algorithms to reduce the bandwidth used to main-
tain and repair the nodes’ routing tables. Furthermore,
Bamboo [33] introduces a periodical recovery scheme to
increase the DHT’s ability to handle churn.

7. Discussion

We have structured our analysis around the two identi-
fied challenges for overlay streaming multicast – the high
degree of transiency and wide range of resource availability
among peer populations in large-scale, open settings. Our
analysis indicates that such degrees of transiency and het-
erogeneity are challenging for DHT-based streaming mul-
ticast systems. Most proposed solutions in the literature
addressed some of these issues at the cost of application
performance.

DHT substrates employ unique node identifiers and
build their routing structures based on random node iden-
tifiers and a latency metric to break ties. The high-
throughput and low-latency requirements of streaming
multicast applications, however, are not well reflected in
this policy. While support for bandwidth capacity has
been built into DHT-based applications, it is unclear how
such schemes may effectively deal with the dynamic na-
ture of the link’s available bandwidth capacity. A number
of heterogeneity-aware techniques for DHT-based multi-
cast protocols have been proposed in the literature [5, 39].
To effectively honor bandwidth constraints, the proposed
approaches introduce non-DHT links which, not being sup-
ported at the underlying DHT substrate, land in the realm
of the applications who are now responsible for monitoring
these links, as well as detecting and repairing failures.

Although we have conducted this study with medium
sized peer groups, we acknowledge that using larger pop-
ulations may potentially benefit other DHT-based applica-
tions as DHTs were initially designed with large scales in



mind. For instance, SplitStream has been shown to scale
well in terms of latency and fairness with increased group
sizes [13] in corporate settings. In the context of streaming
multicast over dynamic, heterogeneous networks, however,
we do not expect larger scales to help addressing the iden-
tified issues with DHT-based multicast.

Some of the issues we have raised could potentially be
addressed through the adoption of ideas from performance-
based systems. It is, however, an open question whether
those techniques can be incorporated into DHT-based sys-
tems without conflicting with some of these systems’ basic
concepts.

8. Conclusions

We analyzed the impact of highly dynamic and hetero-
geneous environments on DHT-based streaming multicast.
Our discussion is based on a detailed evaluation of Split-
Stream [13] and the two underlying protocols it builds on,
Scribe [15] and Pastry [34]. While these underlying pro-
tocols have been successfully applied to homogeneous and
stable settings, such as corporate environments, the charac-
teristics of more open networks have proven to be a chal-
lenge.

Layering protocols enables researchers to more easily
compose powerful applications. However, careful atten-
tion should be paid to the fitness of the resulting “stack”
for a particular purpose. Compromises made at the lower
levels of the stack with one class of applications in mind
may result in a weak platform for a different class of appli-
cations built on top of it. While splitting a stream content
into multiple stripes, forwarded over a multicast forest, is a
powerful concept for building streaming multicast systems,
its realization over a DHT-based substrate will in part de-
pend on effectively addressing some of their issues pointed
out in this paper.

References

[1] S. Banerjee and B. Bhattacharjee. A comparative study of
application layer multicast protocols, 2002. Submitted for
review.

[2] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scal-
able application layer multicast. InProc. of ACM SIG-
COMM, August 2002.

[3] S. Banerjee, S. Lee, B. Bhattacharjee, and A. Srinivasan. Re-
silient multicast using overlays. InProc. of ACM SIGMET-
RICS, June 2003.

[4] A. R. Bharambe, M. Agrawal, and S. Seshan. Mercury: Sup-
porting scalable multi-attribute range queries. InProc. of
ACM SIGCOMM, August/September 2004.

[5] A. R. Bharambe, S. G. Rao, V. N. Padmanabhan, S. Se-
shan, and H. Zhang. The impact of heterogeneous bandwidth
constraints on DHT-based multicast protocols. InProc. of
IPTPS, February 2005.

[6] S. Birrer and F. E. Bustamante. The costs of resilience in
overlay multicast protocols. Tech. Report NWU-CS-04-50,
Northwestern U., October 2004.

[7] S. Birrer and F. E. Bustamante. Reef: Efficiently designing
and evaluating overlay algorithms. Tech. Report NWU-CS-
05-14, Northwestern U., July 2005.

[8] S. Birrer and F. E. Bustamante. Resilient peer-to-peer multi-
cast without the cost. InProc. of MMCN, January 2005.

[9] S. Birrer, D. Lu, F. E. Bustamante, Y. Qiao, and P. Dinda.
FatNemo: Building a resilient multi-source multicast fat-
tree. InProc. of IWCW, October 2004.

[10] F. E. Bustamante and Y. Qiao. Friendships that last: Peer
lifespan and its role in P2P protocols. InProc. of IWCW,
October 2003.

[11] M. Castro, M. Costa, and A. Rowstron. Performance and
dependability of structured peer-to-peer overlays. InInter-
national Conference on Dependable Systems and Networks,
June/July 2004.

[12] M. Castro, M. Costa, and A. Rowstron. Debunking some
myths about structured and unstructured overlays. InProc.
of NSDI, May 2005.

[13] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi,
A. Rowstron, and A. Singh. Splitstream: High-bandwidth
multicast in cooperative environments. InProc. of the 19th
ACM SOSP, October 2003.

[14] M. Castro, M. B. Jones, A.-M. Kermarrec, A. Rowstron,
M. Theimer, H. Wang, and A. Wolman. An evaluation of
scalable application-level multicast built using peer-to-peer
overlays. InProc. of IEEE INFOCOM, March 2003.

[15] M. Castro, A. Rowstron, A.-M. Kermarrec, and P. Druschel.
SCRIBE: A large-scale and decentralised application-level
multicast infrastructure.IEEE Journal on Selected Areas in
Communication, 20(8), October 2002.

[16] Y.-H. Chu, A. Ganjam, T. S. E. Ng, S. G. Rao, K. Sripanid-
kulchai, J. Zhan, and H. Zhang. Early experience with an In-
ternet broadcast system based on overlay multicast. InProc.
of USENIX ATC, June 2004.

[17] Y.-H. Chu, S. G. Rao, and H. Zhang. A case for end system
multicast. InProc. of ACM SIGMETRICS, June 2000.

[18] Y. K. Dalal and R. M. Metcalfe. Reverse path forward-
ing of broadcast packets.Communication of the ACM,
21(12):1040–1048, December 1978.

[19] S. E. Deering. Multicast routing in internetworks and ex-
tended LANs. InProc. of ACM SIGCOMM, August 1988.

[20] C. Diot, B. N. Levine, B. Lyles, H. Kassan, and D. Balen-
siefen. Deployment issues for the IP multicast service and
architecture. InIEEE Networks special issue on multicast-
ing, 2000.

[21] P. Druschel, E. Engineer, R. Gil, J. Hoye, Y. C. Hu, S. Iyer,
A. Ladd, A. Mislove, A. Nandi, A. Post, C. Reis, A. Singh,
and R. Zhang. Freepastry 1.3.2. freepastry.rice.edu, Febru-
ary 2004.

[22] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M.
Levy, and J. Zahorjan. Measurement, modeling and analysis
of a peer-to-peer file-sharing workload. InProc. of ACM
SOSP, December 2003.

[23] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek,
and J. W. O’Toole Jr. Overcast: Reliable multicasting with
an overlay network. InProc. of the 4th USENIX OSDI, Oc-
tober 2000.
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