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Performance Computing

High-performance computing could significantly benefit from publish–subscribe

communication, but current systems don’t deliver the kind of performance

required by applications in that domain. In response, the authors developed Echo,

a high-performance event-delivery middleware designed to scale to the data rates

typically found in grid environments.This article provides an overview of Echo,the

infrastructure on which it’s built, and the techniques used to implement it.

Event-based communication is an
important component of many dis-
tributed applications and services.

The publish–subscribe paradigm it sup-
ports is well-suited to the reactive
nature of many novel applications
(including collaborative-environment,
mobile, and pervasive computing),
allowing subscribers to state their inter-
ests and receive notification of any
publisher-issued event that meets that
interest. This decoupled approach to
communication aids system adaptabil-
ity, scalability, and fault tolerance1

because it enables the rapid and
dynamic integration of legacy software
into distributed systems, supports soft-
ware reuse, facilitates software evolu-
tion, and fits with the component-based
approaches that have become increas-
ingly popular in wide-area high-perfor-
mance computing.

Unfortunately, most existing pub-
lish–subscribe systems also impose
substantial overhead, delivering signifi-
cantly less than the bandwidth and
latency available from the raw network.
This situation has limited the application
of such systems in high-performance
computing, in which computational
progress often depends directly on deliv-
ered network throughput. 

In response to these challenges, we
developed Echo at Georgia Tech as a
high-performance event-delivery middle-
ware designed to scale to the data rates
found in grid-style computing environ-
ments (www.cc.gatech.edu/systems/pro-
jects/ECho). Echo lets applications reap
the maximum benefit from available
bandwidth by allowing receivers to cus-
tomize delivery through derived event
channels, mechanisms that can operate at
network transmission speeds.
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Echo Functionality
Echo supports semantics common to both chan-
nel- and type-based publish–subscribe systems.1

With channel-based subscription, an event chan-
nel is the mechanism through which event sinks
and sources are matched: source clients publish
events to a specific channel, and the sink clients
subscribed to that channel receive notification of
the event. In addition, Echo supports typed chan-
nels, which transmit and handle fully typed events.

Efficient Event Notification
Many event service implementations are central-
ized in some way, either with an overall event
server or with specific objects representing each
channel. To avoid the potential reliability and per-
formance problems associated with centralized
approaches, Echo event channels are lightweight,
fully distributed, virtual entities. 

Figure 1a depicts a set of processes communi-
cating via event channels. In the figure, the chan-
nels exist in the space between processes, but in
practice, they’re distributed, with bookkeeping data
residing in each process in which they’re refer-
enced (see Figure 1b). The process that creates the
event channel is distinguished because it’s the con-
tact point for other processes wishing to use the
channel. The distribution of event notifications,
however, is completely decentralized and makes no
distinctions among processes. A source sends event
messages directly to all sinks, and network traffic
for individual channels is multiplexed over shared
communication links. Sharing the communication
links helps ensure that Echo event channels are
lightweight entities, thus allowing many to coexist
in a single process. (Some high-performance sys-
tems with multi-endpoint delivery needs can ben-
efit from overlay networks that use intermediate
nodes to help multiplex and relay events. We
describe Echo’s support for those systems later.)

Event Notification Types and Typed Channels
One of Echo’s differentiating characteristics is its
support for efficient transmission and handling of
fully typed events. Some event delivery systems
leave event data marshalling to the application; oth-
ers support only generalized name–value pairs to
represent all or part of the event data. In contrast,
Echo allows structured types to be associated with
event channels, sinks, and sources, and automati-
cally handles heterogeneous data transfer issues.

Echo is implemented on top of PBIO (Portable
Binary I/O),2 a package developed at Georgia Tech

to simplify heterogeneous binary data transfer.
Building marshalling functionality into Echo using
PBIO allows for layering that nearly eliminates
data copies during marshalling and unmarshalling.
As other researchers have noted,3 minimizing these
data copies is critical to delivering full network
bandwidth to higher levels of software abstraction.
Layering with PBIO makes Echo suitable for appli-
cations that demand high-performance communi-
cation of large amounts of data. In particular,
because PBIO and Echo can directly transport
structured types, memory-resident data in a source
program can be published, sent to subscribers, and
recreated as memory-resident data at the destina-
tion with minimal transformation.

Base type handling and optimization. In the con-
text of high-performance messaging, Echo event
types are most functionally similar to the user-
defined types found in the message-passing
interface (MPI), a widely used standard in high-
performance systems. The main differences are in
expressive power and implementation. Like MPI’s
user-defined types, Echo event types describe C-
style structures made up of atomic data types. Both
systems support nested structures and statically
sized arrays, but Echo’s type system extends this
to support null-terminated strings and dynamical-
ly sized arrays. (Dynamic array sizes are given by
an integer-typed field in the record. Full informa-
tion about the types Echo and PBIO support
appears elsewhere.2)
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Figure 1. Using event channels for communication. In this (a)
abstract view of event channels and (b) an Echo realization of event
channels, we see the decentralized structure of Echo’s realization.
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The full declaration of message types to the
underlying communication systems, as support-
ed by Echo and MPI, makes several performance
optimizations possible: it allows the underlying
communication system to optimize buffer usage,
minimize copying, and take advantage of the
sending and receiving systems’ characteristics.
Unlike many MPI implementations, Echo and
PBIO exploit this by combining native data rep-
resentation (NDR) with the dynamic generation
of unmarshalling routines. The reliance on NDR
lets Echo and PBIO avoid the overhead associat-
ed with intermediate wire formats by using the
sender’s NDR as the wire format. A wire format is
the representation of data during transmission,
such as the external data representation (XDR) or
the Internet Inter-Orb Protocol (IIOP); it is typi-
cally fixed and agreed upon in advance. On the
receiving side, we must convert from the wire
format (that is, the sender’s NDR) to the receiv-
er’s native format — a process commonly referred
to as unmarshalling. If necessary, PBIO converts
the receiver’s native representation upon receipt
by dynamically generating conversion routines.
As we’ve previously shown,4 PBIO encode times
don’t vary with data size, and its decode times are
much faster than MPI’s. Given that as much as
two thirds of the latency in a heterogeneous mes-
sage exchange is software conversion overhead,4

PBIO’s NDR approach yields round-trip message
latencies as low as 40 percent compared to that
of MPI.

In PBIO and Echo, each marshalled data pack-
age contains a format cookie (similar to the
markup in an XML document) that identifies the
meta-information associated with the data. The
interested party can then retrieve the meta-infor-
mation required to decode and process an event,
thus allowing intervening hosts to filter or trans-
form events without a priori knowledge of the
event’s contents. Once retrieved, PBIO caches the
meta-information for reuse. Because data streams
in high-performance computing typically consist
of data that can be described with only a few
structured types, meta-information retrieval has a
minimal impact on steady-state performance.

Type extension. Echo supports the robust evolu-
tion of sets of programs communicating with
events by allowing variation in the data types
associated with a single channel. In particular, a
source can submit an event whose type is a super-
set of the type associated with its channel. Con-

versely, an event sink can have a type that is a
subset of the event type associated with its chan-
nel. This enables the independent and unsynchro-
nized evolution of event types at either end
without disrupting previously set communications.
Echo even allows type variation in intraprocess
communication, imposing no conversions when
source and sink use identical types, but perform-
ing the necessary transformations when source
and sink types differ in content or layout.

In terms of flexibility, Echo’s features most
closely resemble those systems that support the
marshalling of objects as messages. In such sys-
tems, the support that subclassing and type exten-
sion provide for robust system evolution is
substantively similar to that provided by Echo’s
type variation, but object-based marshalling often
suffers from prohibitively poor performance. XML-
based messaging systems naturally offer a type-
flexible coupling between event sources and sinks
because of XML parser characteristics. However,
the performance overhead of XML-based messag-
ing (due to the required binary-encoded/text/bina-
ry-encoded conversions and the transport of
significantly larger messages) makes it unsuitable
for the needs of high-performance computing
applications. Echo’s strength is that it maintains
the application integration advantages of object-
and XML-based systems while offering communi-
cation performance that, in many cases, outper-
forms more traditional (and rigid) message-passing
systems.

Basic Data Exchange Performance
Echo’s delivered bandwidth and latency are near
what the raw network offers when it transports a
similar number of bytes between user-level appli-
cation endpoints. Its performance advantage is
due mostly to its adoption of NDR4 as a wire for-
mat with out-of-band access to the message’s
meta-information. This, together with careful
software layering, allows event data to be writ-
ten directly to the wire from memory without any
copies or transformation. At the destination, the
receiving process can often use the data directly
from the receive buffer without further transfor-
mation. When transformation is necessary due to
different native data formats, Echo relies on
dynamically generated subroutines. Figure 2 pro-
vides relative performance measures; a detailed
discussion of Echo’s performance characteristics
and the sources of its performance advantages
appear elsewhere.4–6
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Event Filtering and
Transformation
Event subscription schemes differ in the ways in
which users specifiy their events of interest.
Beyond subscription schemes, a few event systems
provide some form of filtering mechanisms to
allow for more specific, customization of the event
stream. Echo’s principal contribution to specializ-
ing data flows is the concept and realization of
derived event channels.

Echo’s derived event channel bears some simi-
larity to prior work on content-based filtering and
pattern-based filtering and transformation.7 How-
ever, Echo allows general computations over event
data and ensures their efficient execution through
the use of dynamic code generation (DCG) and the
reliance on decentralized event distribution.The
Java-based approach of Distributed Asynchronous
Collections8 offers broad generality in content-
based subscriptions, but it lacks the transforma-
tion capacity of derived event channels and offers
significantly lower throughput and higher latency
than Echo.

Derived Event Channels
Echo’s approach to event channel customization is
to extend the channels via derivation. Applications
that want to customize their event data can create
a new channel whose contents are derived from
those of a preexisting channel through an appli-
cation-provided derivation function, F. The event
channel implementation moves this function to all
event sources in the original channel, executes it

locally whenever events are submitted, and trans-
mits any resulting event via the derived channel.
If the derived event channel’s sinks are local to any
of the sources in the original setup, network traffic
between them is avoided entirely. This has the
advantage of eliminating unwanted event traffic
and the associated waste of computational and
network resources.

Mobile Functions and the E-Code Language
A critical issue when implementing derived event
channels is the nature of the function F and its
specification. Because the client specifies F to be
evaluated at the (possibly remote) source, a simple
function pointer is obviously insufficient. Corba
and Siena use a relatively restricted filter language
(for example, a combination of Boolean opera-
tors),9 an approach that enables efficient interpre-
tation, but can limit the system’s applicability.
Ideally, we could express F through a more gener-
al programming language. Although this is rela-
tively easy to support in a homogeneous system
using dynamic linked libraries (DLLs), it becomes
particularly difficult in heterogeneous settings,
especially if type safety is to be maintained. Opt-
ing for an interpreted language (such as, Tcl or
Java) avoids problems with heterogeneity, but at
the cost of performance.

Given Echo’s target domain of high-performance
computing, and based on the observation that most
commonly used or required filters are relatively sim-
ple, we made Echo’s derived event channel rely on
a small language, E-Code,10 as well as DCG. We
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Figure 2. Relative performance. Echo’s performance with respect to (a) round-trip latency and (b) delivered bandwidth
shows that Echo delivers more bandwidth at a lower latency across a range of data structure sizes.
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express the function F in E-Code and use dynamic
code generation to create a native version of F on
the source host. E-code is currently a subset of C,
supporting C operators, for loops, if statements, and
return statements.

E-Code’s dynamic code generation capabilities
are based on a Georgia Tech DCG package that pro-
vides a virtual reduced instruction set computing
(RISC). E-Code consists primarily of a lexer, parser,
semanticizer, and code generator and is the equiva-
lent of a just-in-time compiler. As such, the E-
Code/RISC system generates native machine code
directly into the application’s memory without ref-
erence to an external compiler. Because E-Code is
designed to operate on the fully described and
array-bounded structured data types that PBIO sup-
ports, E-Code can ensure that the generated code
doesn’t reference memory other than what the event
provided to it. Thus, Echo doesn’t have to rely on a
virtual machine or other sandboxing techniques,
and its generated filters and transformations can
run at roughly the speed of unoptimized native
code. Generating native code for an E-Code sub-
routine is considerably faster than forking an exter-

nal compiler — for example, for a 66-line-integer
gray-scaling code, ECL requires only 4 ms to gen-
erate native code, whereas forking the GNU C com-
piler (GCC) requires 700 ms.

Echo currently supports two uses of derived
event channels. In its simplest mode, the derived
channel’s event type is the same as that of the orig-
inal channel. In this case, the E-Code required is a
Boolean filter function that accepts a single para-
meter, which is the input event. If the function oper-
ating on an event returns a nonzero value, Echo
submits the event to the derived event channel, oth-
erwise it is filtered out. Event filters can be quite
simple, such as the stock-trading example in Figure
3a, which passes trade information into the derived
event channel only when the stock is trading out-
side of a specified range. When used to derive a
channel, Echo transports this code in string form to
the event sources associated with the parent chan-
nel, which is where Echo parses it and generates its
native code. Echo evaluates the code string in the
context of a function declaration of the form:

input f(�input event type� input)

where �input event type� is the type associated with
the parent channel. Once derived, the created
channel behaves as a normal channel with respect
to sinks. It has all the parent channel’s sources as
implicit sources, but any new sources providing
unfiltered events could also be associated with it.
Because the derived event channel is a full-fledged
channel, its content is also subject to chained
derivations that further customize the data stream.

Beyond this basic mode, Echo also supports
derived event channels in which the event type
associated with the derived channel is different
from that of the parent channel. In this case, Echo
adds an output parameter to the function declara-
tion described earlier: the generated code is respon-
sible for initializing all the output data structure’s
elements, as in the example in Figure 3b, which is
taken from a global climate simulation. The rela-
tive performance gains from event filtering depend
directly on the proportion of filtered-out events or
the size reduction achieved by event transforma-
tion, and are thus highly application-specific.

Underlying System
The facilities described so far give a simple view
of Echo’s external interfaces, but Echo typically
targets complex, large-scale environments and set-
tings in which massive data streams must be deliv-
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Figure 3. Example ECL event filter/transformation functions.A
specialization filter (a) passes only those stock trades outside a
predefined range and (b) computes the average of an input array
and passes the average to its output.

{
if ((input.trade_price < 75.5) || 

(input.trade_price > 78.5)) {
return 1; /* submit to derived */

} 
return 0; /* do not submit to derived */

}
(a)

{
int i; 
int j; 
double sum = 0.0; 
for(i = 0; i<37; i= i+1) {
for(j = 0; j<253; j=j+1) {
sum = sum + input.wind_velocity[j][i];

}
} 
output.av_velocity = sum / (37 * 253); 
return 1;

}
(b)



ered to multiple clients with some degree of appli-
cation-level, quality-of-service requirements. 

We built early versions of Echo on a PBIO-
based point-to-point messaging system that
always performed direct source-to-sink event
delivery. This approach delivers the targeted results
in cluster-based high-performance computing
environments, but in enterprise or wide-area envi-
ronments, point-to-point messaging can limit
application scalability with respect to the number
of sinks or subscribers per notification. 

To address this issue, as well as to provide an
infrastructure for continuing research in adaptive
delivery, our recent work builds on EVPath, a
package for facilitating the construction of event
notification overlay networks. Work on EVPath
began in late 2004, and although it isn’t available
for distribution yet, you can find preliminary
information at www.cc.gatech.edu/systems/
projects/EVPath.

Overlays: EVPath
EVPath is a middleware package designed to facil-
itate the dynamic composition of overlay networks
for message passing. Instead of imposing a partic-
ular overlay, EVPath focuses on link’s characteris-
tic monitoring (such as available link bandwidth,
processing load, and event rates), overlay control,
and actual data handling. For global decisions on
the suitability of overlay paths, service placement,
and so on, EVPath relies on higher-level controls.

Although EVPath is designed to implement the
paths over which data can travel, it doesn’t imple-

ment a path abstraction itself. Instead, the princi-
pal abstractions in EVPath are stones (similar to
stepping stones), which, when linked together,
compose a data path. Message flows between
stones can be both intra- and interprocess, with
interprocess flows managed by special output
stones. Other types of stones include terminal
stones, which implement data sinks; filter stones,
which transform data; and split stones, which
implement data-based routing decisions and can
redirect incoming data to one or more other stones
for further processing.

All stones have associated queues that hold
incoming data before it’s processed. For output
stones, data can accumulate in the queue if an out-
going network link is congested. Output stones
have congestion handlers that can discard events
or perform other application-specified data reduc-
tions. For other types of stones, the queue serves
only as a temporary stopping point during normal
operation because immediate processing and
transfer to the next stone is almost always possi-
ble. However, the ability to freeze portions of the
message flow for a period of time is essential for
dynamically reconfiguring the path without dis-
rupting the current data-processing activity. Fig-
ure 4a shows an overlay experiencing difficulty
caused by either a compute overload on one of the
processing nodes or undue congestion in one of
the associated network links. Figure 4b shows the
same logical overlay, but the problems have been
relieved by adding an extra stone, to which some
of the data from the problematic stone is offloaded.
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Figure 4. Changes in an overlay network. (a) An overlay with localized congestion or computational overload, and (b) the
same overlay with additional processing stones.
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In this case, an upstream stone responsible for
splitting the data between the two processing
nodes and a downstream node that reassembles the
stream have also been added.

To support the enactment of this kind of
dynamic overlay change, EVPath lets higher soft-
ware layers suspend processing in stones, relocate
queued events, create and destroy stones, and
modify those stones’ linkages. It also has built-in
mechanisms for monitoring and collecting suitable
information relating to system performance and
capabilities, making such information available as
attributes to higher-level decision-making layers
(which manage the overlays to ensure desired end-
to-end quality characteristics). Echo’s current use
of EVPath is in its infancy, but it’s developing into
a system that constructs optimized overlay net-
works on the fly and includes the ability to migrate
processing (such as derived event channel filters)
into interior network nodes.

Advanced Topics
We designed EVPath and Echo to be extensible
research tools. As such, they must be flexible
enough to perform and support investigation in a
variety of situations — EVPath, for example, is
designed as an enactment layer that supports mes-
sage passing on overlay networks. Because the
construction, optimization, and management of
overlay networks is an active research area,11

EVPath isn’t customized for a particular overlay
mechanism, but relies instead on an external over-
lay management layer.

Support for congestion handlers and network
monitoring in EVPath is designed to support the
creation of applications that can adapt and
respond appropriately to changes in network-level
conditions, customizing their own behavior and
bandwidth demands as well as potentially adapt-
ing the network protocols themselves.12 Network
monitoring also informs overlay creation and
management. Our Active Streams13 project demon-
strates early work in these directions. With Active
Streams, we explored a novel approach that, by
leveraging much of this infrastructure, aims to
facilitate the task of building large-scale distrib-
uted systems for heterogeneous, highly dynamic
environments through the online composition,
mapping, and steering of filters on data streams.

Most component-based systems rely on publish-
subscribe infrastructures for integration. To

take full advantage of the component-based
approach, our work on Echo extends the applica-
bility of publish-subscribe to encompass applica-
tions' main, performance-intensive, data flows.

Echo has been in continuous use for over five
years, in applications ranging from corporate infor-
mation flow models to high-performance scientif-
ic computations. In our ongoing work, we’re
investigating application-level event filters that can
customize information flow based on dynamic net-
work resource availability such as bandwidth and
end-to-end latency. We envision Echo extensions
that allow the messaging system to play a more
active role in resolving the versioning differences
resulting from application evolution, including
techniques such as message morphing.14 Because
Echo filters are simple and transportable, we might
be able to migrate them to the most appropriate
location in both a single’s node’s network stack and
over the multiple nodes in the data path. We’re cur-
rently integrating new overlay management
schemes to enable filter migration over the net-
work. We’re working toward moving such func-
tionality into “smart” network routers. In a local
node, we’ve been able to place them at different
levels in the network stack, into the kernel, and
even attached into network interface cards.
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