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Abstract—We address the problem of highly transient popula-
tions in unstructured and loosely-structured peer-to-peer systems.
We propose a number of illustrative query-related strategies
and organizational protocols that, by taking into considera-
tion the expected session times of peers (their lifespans), yield
systems with performance characteristics more resilient to the
natural instability of their environments. We first demonstrate
the benefits of lifespan-based organizational protocols in terms
of end-application performance and in the context of dynamic
and heterogeneous Internet environments. We do this using
a number of currently adopted and proposed query-related
strategies, including methods for query distribution, caching
and replication. We then show, through trace-driven simulation
and wide-area experimentation, the performance advantages
of lifespan-based, query-related strategies when layered over
currently employed and lifespan-based organizational protocols.
While merely illustrative, the evaluated strategies and protocols
clearly demonstrate the advantages of considering peers’ session
time in designing widely-deployed peer-to-peer systems.

Index Terms—Lifespan, session time, resilience, peer-to-peer.

I. INTRODUCTION

Peer-to-peer (P2P) computing can be defined as the sharing
of computer resources and services by direct exchange be-
tween the participating nodes. Since Napster’s [2] introduction
in the late 90s, the area has received increasing attention from
the research community and the general public. Peers in P2P
systems typically define an overlay network topology by keep-
ing a number of connections to other peers, their “friends,”
and implementing a maintenance protocol that continuously
repairs the overlay as new members join and others leave the
system.

Due in part to the autonomous nature of peers, their mutual
dependency, and their astoundingly large populations, the
transiency of peers (a.k.a. churn) and its implications on
the overall system’s performance have recently attracted the
attention of the research community [3]–[12]. A well-accepted
metric of churn is node session time – the time from the
node’s joining to its subsequent leaving from the system. 1

Measurement studies of deployed P2P systems have reported
median session times varying from one hour to one minute [6],
[8], [13].

An earlier version of this paper appeared in IEEE P2P 2005 [1].
1We employ lifespan and session time interchangeably. Another metric of

transiency sometimes used, lifetime, refers instead to the the time between the
node first entering the system and its final departure from it [6].

The implications of such degrees of churn on the system’s
performance are directly related to the degree of peers’ in-
vestment in their friends. At the very least, the amount of
maintenance-related messages processed by any node would
be a function of the degree of stability of the node’s neighbor-
ing set. Beyond this, and in the context of content distribution
P2P systems, the degree of replication, the effectiveness of
caches, and the spread and satisfaction level of queries will
all be affected by how dynamic the peers’ population is.

Our work addresses the problem of highly transient pop-
ulations in unstructured and loosely-structured P2P systems
(collectively, less-structured P2P systems). Through active
probing of over half-a-million peers in a widely-deployed P2P
system, we determined that the session time of peers can be
well modeled by a Pareto distribution. In this context, the
implication is that the expected remaining session time of a
peer is directly proportional to the session’s current length, i.e.
the peer’s age. This observation forms the basis for a new set
of protocols for peer organization and query-related strategies
that, by taking into consideration the expected session times
of peers, yield systems with performance characteristics more
resilient to the natural instability of their environments.

The lifespan-based approach for organizational protocols
was first proposed in our position paper [8], where we show
its effectiveness in terms of increased system stability (e.g.
over 42% reduction on the ratio of connection breakdowns
and their associated costs) through a simulation study. In this
article we first demonstrate the advantages of our approach in
terms of application performance in a dynamic Internet testbed
of 150 widely distributed PlanetLab nodes. We do this using
a set of illustrative organizational protocols combined with
a number of currently adopted and proposed query-related
strategies, including methods for query distribution, caching
and replication. Our results show that even simple lifespan-
based overlays can significantly boost query performance (with
improvements of at least 57% on aggregated query hits and
50% reduction in query resolution time) and increase system
scalability by achieving query performance comparable to
those of currently deployed protocols with only a third of their
load.

We then apply similar ideas to query-related strategies.
Through trace-driven simulation and wide-area experimenta-
tion we demonstrate the performance advantages of lifespan-
based query-related strategies when layered over currently em-
ployed organizational protocols as well as when used in com-



2

bination with their lifespan-based variations. Our results show
that lifespan-based strategies can generate over 2-5 times more
query hits than alternative strategies. While merely illustrative,
the evaluated protocols and strategies clearly demonstrate the
advantages of considering peers’ session time in designing
widely-deployed peer-to-peer systems.

The rest of this paper is structured as follows. Section II pro-
vides a brief background on relevant P2P systems, protocols
and strategies. Section III and IV present results from our study
on peers’ lifespans and discuss lifespan-based organizational
protocols and query-related strategies. Section V describes our
evaluation methodology and presents results from both trace-
based simulations and wide-area experiments. We discuss
some related work in Section VI and conclude in Section VII.

II. BACKGROUND

The structure of a peer-to-peer system is defined by its
organizational protocol. In unstructured (UDP) and loosely-
structured or hierarchical P2P (HDP) systems2, peers define
the P2P network overlay through connections with other
(mostly randomly) chosen peers. While organizational pro-
tocols for unstructured systems, such as Gnutella v0.4 [15],
consider all peers as equals, protocols for loosely-structured
systems, like Gnutella v0.6 and Kazaa [16]–[18], commonly
define a two-level hierarchy distinguishing between common
“leaf” peers and well provisioned super-peers.

Connected peers interact with each other by exchanging
various types of messages, most of which are broadcasted or
back-propagated. Broadcasted messages are sent on to all other
peers to which the sender has connections. Back-propagated
messages (e.g. replies) are forwarded on the reverse of the
path taken by an associated message (e.g. query). In addition
to queries and replies, discussed in detail in the following
subsection, other types of messages include object transfer and
group membership messages such as ping, pong and bye. Pings
are used to discover hosts on the network. Pings are answered
with pong messages, containing information (such as contact
information and resources shared) about the responding peer
and about others than the peer knows about. Information on
neighboring peers can be provided either by creating pongs on
their behalf or by forwarding the pings and back-propagating
their replies. Byes are optional messages used to report the
closing of connections.

A. Query, Caching and Replication

A key component of resource sharing P2P systems is their
search or query mechanism. In highly structured (DHT-based)
systems, the search for an object based on its object identifier
is a relatively easy task, thanks to the strictly controlled place-
ment of objects. In less structured P2P systems, however, the
location of an object is independent of the system’s topology,
leaving peers with only “near blind” query strategies [19]. We
review some of these strategies for less structured systems
next, including currently used and other proposed techniques
for query distribution, caching and replication.

2We use the classification proposed by Lv et al. [14]

The earliest and simplest query strategy is flooding, where
a query is propagated to all neighbors within a certain radius.
Addressing flooding’s inherent scalability problems, Lv et
al. [14] propose k-random-walks, where a set of parallel query
messages (walkers) are independently forwarded to randomly
chosen neighbors at each hop, significantly reducing the num-
ber of messages in the network. A number of improvements to
the basic strategy have been suggested [5], [20], [21]. Adamic
et al. [20] propose using random walk in power-law topologies
with walks biased toward high-degree nodes. While this can
significantly improve query performance, it could also result
in overloaded nodes. Lv et al. [21] and Chawathe et al. [5]
suggest taking node capacity into consideration through biased
random walks, directed toward high-capacity peers.

To further boost query performance, different strategies for
index caching have been proposed, including Path Caching
with eXpiration (PCX) and Neighbor Caching with incre-
mental Update (NCU). With PCX, each node in the system
maintains an index cache, with each entry being a (key,

value) pair [22]. The value in the pair is normally a pointer
to the node holding a replica of the object associated with
the corresponding key [23], [24]. Upon receiving a query
message, the node not only checks its own shared objects, but
also scans the cache for entries with matching keys. Upon a
successful match, the node replies with the associated pair(s).
PCX can be used in both DHT-based and less structured sys-
tems to improve query results. With NCU [5], [18], [20], each
node maintains caches of metadata for all of its neighbors. As
with PCX, a node sends a query hit either on its own behalf
or on behalf of its neighbors, effectively increasing the reach
of a query [25], [26].

Replication is a common approach to improve performance
when distributed systems need to scale in numbers of users,
objects in the system and geographical area. The most com-
monly used file replication strategy in P2P systems simply
makes replicas of objects on the requesting peer, upon a
successfully query/reply. Beyond this, a number of proac-
tive replication strategies that aim at improving query hits
while reducing response time have been proposed. Cohen and
Shenker [19] modeled various explicit replication strategies;
they found square-root replication, which can be efficiently
achieved using path replication, to be optimal.

III. TRANSIENT POPULATIONS AND P2P SYSTEMS

There has been a number of studies of peers’ participation
and transiency in P2P systems [8], [13], [25], [27]–[30]. We
performed an independent study [8] of peers’ lifespans in
the widely deployed Gnutella network (v0.6 [18], i.e. with
super-peers), collecting over 1 million peer session times
for over half-million peers. The next subsections describe
our measurement experiment and the characterization of the
distribution of peers’ session times.

A. Collecting Observed Peers’ Lifespans

To actively measure the lifespan of peers in Gnutella, we
modified an open source Gnutella client3 to keep track of

3Mutella: http://mutella.sourceforge.net
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every peer found and periodically check its availability. Our
monitoring peer maintains a hash table of peers it has seen so
far. Each entry in the hash table includes fields for (1) peer’s
IP:port pair, (2) node type (leaf- or ultra-peer), (3) time of
birth (TOB), (4) time when found (TWF), and (5) time of
death (TOD).

On each iteration, the monitoring peer updates the existing
entries and inserts newly found peers. To avoid potential
measurement errors, each of our probes tries to establish
an application-level connection checking for specific Gnutella
packet headers. Since it knows with certainty only the TOB
of previously known and reborn peers, live peers found for
the first time are included with only the TWF field set to the
current time. A peer is considered dead when a connection
attempt fails (i.e. a third try times out; we use the default
timeout value of 10 seconds) or an unexpected response is
received. Table I summarizes the strategy used for updating
peer lifespan information. For example in the fourth case in
the table (in italics), if a peer was found dead in the previous
scan and alive in the current one, its TOB is set to the current
time.

Last Scan Current Scan Action
Unknown Dead None
Unknown Alive TWF = T
Dead Dead None
Dead Alive TOB = T
Alive Dead TOD = T
Alive Alive None

TABLE I
STRATEGY USED FOR UPDATING THE PEER TABLE IN EACH ITERATION (T:

CURRENT TIME).

To scale monitoring and generate lifespan measurements
with sufficient granularity, we evenly distribute the peer table
(based on the hash values of peers) over 20 monitoring peers
running across 17 hosts. This approach allowed us to achieve
a granularity of 1,300 seconds (about 21 minutes) when
scanning over 30k to 40k entries per client.

B. Peer Lifespan Distribution

We measured the lifespans of more than 500,000 peers
continuously between March 1st and 8th, 2003. To account
for the fact that sessions may be active (or inactive) for times
longer than our sampling duration, we resort to the create-
based method [13]: we divide the captured trace into two
halves and report lifespans only for sessions started in the
first half. If a session ended during either the first or second
half, we can obtain its lifespan by subtracting the starting
time from the ending time; if a session was still active at the
very end of the trace, we get a lower bound for its lifespan,
which is larger than half the trace length, i.e. 3.5 days. This
method provides accurate information about the distribution
of lifespans for sessions that are shorter than half the trace, as
well as percentage of sessions that are even longer.

Figure 1 presents the Reverse Cumulative Distribution Func-
tion (RCDF) of peers’ observed lifespans shorter than 3.5 days
(and longer than 1,300 seconds). The lifespan distribution is

RCDF of Peer Lifespans
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(a) Normal plot.
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(b) Log-Log plot.

Fig. 1. Distribution of lifetimes in Gnutella over a period of 7 days. The
two additional lines in subfigure (a) show two attempts (a Pareto distribution
and an exponential curve) to fit a curve to these data. Subfigure (b) shows the
same distribution on a log-log scale; the straight line here indicates that the
distribution can be modeled by λT

k, where the constant k is less than zero
and proportional to the slope of the line.

presented in both normal axes (a) and log-log scale (b). The
distribution in the log-log scale plot can be approximated by
a straight line, indicating that the peer lifespan distribution
can be modeled by a Pareto distribution of the form λT k

(k < 0). More precisely, the probability of a session exceeding
T seconds is λT k. The R2 value higher than 0.99 verifies
the very high goodness of fit of the model. In contrast, the
exponential curve fails to model the observed data with a R2

value of only 0.80.
The Pareto distribution belongs to the UBNE (Used-Better-

than-New-in-Expectation) class of distributions. In this con-
text, this means that the expected remaining session time of a
peer is directly proportional to the session’s current length. Our
work [8] was the first one characterize the distribution of peer
session times. The next section presents a number of lifespan-
based organizational protocols and query-related strategies for
loosely-structured P2P systems based on this observation.

IV. LIFESPAN-BASED PROTOCOLS AND STRATEGIES

We first provide an overview of lifespan-based organiza-
tional protocols [8]. The basic idea behind these protocols is
to dynamically increase the system’s dependency on a node as
the node’s long-term commitment to the community becomes
clear. This can be achieved by simply giving preference to
peers with longer expected sessions times. Given the UBNE
nature of lifespan distribution [8], a peer’s current age is a fair
estimate of its session time.

Similarly, existing query-related strategies can be easily
modified to incorporate lifespan-based ideas. We then present
a number of query-related strategies that rely on lifespan to
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steer query walkers and decide on replica placement and cache
eviction.

We close the section by outlining a lightweight distributed
protocol for peers’ age discovery [1].

A. Peer Lifespan and P2P Protocols

In most P2P protocols, there are at least two instances
where peers need to choose among “acquaintances”: (1) when
deciding who to befriend and (2) when needing to respond to a
third-party’s request for references. In Gnutella-like protocols,
for example, the first group would be contacted for connection
requests and the second one would be included in pong replies
to ping messages.

Peers normally keep a number of other peers as neigh-
bors by accepting an upper-bounded number of incoming
connections and trying to maintain a lower-bounded number
of outgoing ones. To cope with the dynamic changes in
P2P user population, most systems implement some kind of
maintenance or recovery protocol that continuously repairs the
overlay as nodes join and leave the network. Nodes joining
the network use a number of control messages to let others
know of their arrival. The departure of a node is noticed by
its neighbors through periodic monitoring.

Our lifespan-based approach can be equally applied to the
organization of unstructured and loosely structured protocols.
In our position paper [8] we described its use in a set of illus-
trative unstructured protocols: a basic protocol that employs
estimated lifetime when selecting new neighbors (LSPAN-1),
a slightly more refined protocol that relies on lifespan ideas
for both recommendation and selection (LSPAN-2), and a
third protocol that takes the estimated number of available
connections into consideration to better distribute connection
attempts among candidate peers. The following paragraphs
describe each of these protocols and Table II highlights their
main aspects.

Lifespan-Based Friend Selection (LSPAN-1): Our first
protocol takes peers’ observed lifespans into consideration
only when deciding with whom to open a connection. Peers
piggy-back their own birth time in their ping messages and
propagate other peers’ birth times with their replies. When a
peer needs to open a new connection, e.g. after the departure
of a friend, it simply selects the oldest known peer as its new
partner. Notice that the selection process incorporates some
degree of randomness. While a peer chooses the oldest peer(s)
from among those it knows of, this group is made from the
random set of recommendations forwarded by other peers in
the network.4

Lifespan-Based Friend Selection and Recommendation
(LSPAN-2): LSPAN-2 uses lifespan in both opportunities:
when selecting peers for connecting and when generating a
response to a third-party’s request for references. From the
perspective of the peer trying to open a new connection, this
ensures that the set of potential friends is made of long-
lived peers. The two protocols introduced so far would blindly
favor older peers and will naturally result in an increase in

4Recommendations are obtained through the ping/pong message exchange
already described.

the number of connection attempts made to them. Since the
actual number of incoming connections that a peer can accept
is typically bounded by its maximum number of incoming
connections, our last protocol considers the estimated number
of available incoming connections of a peer when selecting
who to connect to.

Taking Available Connection into Consideration (LSPAN-
3): LSPAN-3 uses a weighted credit selection scheme that
incorporates both criteria: the peer’s current age and the
estimated number of available incoming connections. The
estimated number of available incoming connections is the
difference between the optimal and current number. The
optimal number of incoming connections is upper-bounded,
and its value at a given point in time lies between a half and
three-fourths of the maximum number of incoming connec-
tions, depending on the peer’s age (the older it is, the larger
the optimal incoming connection number). In deployed P2P
systems we expect to find a positive correlation between the
lifespan of a peer and its maximum number of connections:
peers behind a modem can only support very limited con-
nections to others, and tend to remain online for very short
times, while peers using T1/T3 connections will have a larger
maximum number of connections and often stay active for
several days [13]. Correspondingly, the number of maximum
connections allowed by a given peer in our protocols is related
to the peer’s current session time. For our experiments this
number ranged between 5 and 50, with an average value of
20.5

Protocol Connect? Recommend?
LSPAN-1 Oldest Random
LSPAN-2 Oldest Oldest
LSPAN-3 Oldest & more avail. connections Random

TABLE II
LIFESPAN-BASED PROTOCOLS AND HOW THEY SELECT AMONG

CANDIDATE NEIGHBORS AND RECOMMENDATIONS.

We first demonstrated the advantages of a lifespan ap-
proach to organizational protocols, showing its effectiveness
in terms of increased system stability through a simulation-
based study [8]. Using one of the 20 traces collected,6 we
evaluated our three illustrative protocols and compared them
with two decentralized protocols. The alternative protocols
used for comparison are closely based on Gnutella- and Kazaa-
like protocols: Unstructured Decentralized Protocol (UDP)
is based on an improved version of Gnutella v0.4 [15] and
Hierarchical Decentralized Protocol (HDP) is modeled after
hierarchical protocols that rely on ultra- or super-peers [16]
such as Kazaa [17] and Gnutella v0.6 [18]. We heavily
relied on the specifications and available RFCs. When the
specifications were vague or unavailable, we resorted to our
understanding of (open-source) clients currently in use and

5We also evaluated the performance of our protocols following the node
capacity distribution model suggested by [5], where each node is assigned a
maximum connection number based on its capacity class. Nodes’ capacities
are assigned arbitrarily and have no correlation with the nodes’ session times.
The results, available upon request, are comparable to those included in the
article.

6Simulations using the remainder traces yield similar results.
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other publicly available documents.
Our experiment run for a total simulation period of 510,000

seconds (about six days), capturing the lifespan of 36,577
peers. Each simulation starts “cold,” i.e. without any peer. The
number of peers in the system increases during the first day
and stabilizes for the remaining time, varying between 700
and 1,000 at any given point. The results reported exclude
this warm-up period (∼80,000 sec.). We now quote some of
our results; for the complete set, we direct the reader to our
position paper [8].

A good indicator of the effect of a protocol on system
stability is the ratio of connection breakdowns to the number of
effective connections. Table III shows this ratio for every one
of the protocols discussed, in terms of a few statistics including
average, standard deviation, maximum and minimum. As can
be observed, all lifespan-based protocols yield lower ratios of
connection breakdowns than random-based protocols (UDP
and HDP), a natural result of the UBNE property of peers’
lifespan distribution and the former protocols’ preference
for older peers. The most selective lifespan-based protocol,
LSPAN-2, naturally gives the lowest ratio of connection
breakdowns over time, with reductions of 42% by comparison
with that of UDP and HDP. LSPAN-1 and LSPAN-3 yield
comparative savings of 26% to 28% (by contrast with UDP)
in the ratio of connection breakdowns in the system and their
associated costs.

Protocol Avg (%) Std (%) Min (%) Max (%)
UDP 7.318 1.632 4.142 10.894
HDP 7.533 (-2.9) 1.756 (-7.6) 4.159 (-0.4) 11.645 (-6.9)
LSPAN-1 5.385 (26.4) 1.155 (29.2) 3.101 (25.1) 7.793 (28.5)
LSPAN-2 4.262 (41.8) 0.951 (41.7) 2.443 (41.0) 6.104 (44.0)
LSPAN-3 5.235 (28.5) 1.103 (32.4) 3.017 (27.2) 7.360 (32.4)

TABLE III
RATIO OF CONNECTION BREAKDOWNS TO NUMBER OF EFFECTIVE

CONNECTIONS OVER TIME (AGGREGATED OVER 10,000 SEC) AND
REDUCTION PERCENTAGE RESPECT TO UDP.

As we previously point out, the peers’ preference for long-
lived neighbor candidates could result in a high overall number
of connection rejections by these long-lived peers. While this
is true for our most selective protocol LSPAN-2, LSPAN-
1 and LSPAN-3 yield virtually insignificant increases with
averages number of connection rejection per peer of 0.859 and
0.158 for every 10,000 seconds, respectively. In other words,
under LSPAN-3 a peer will face, on average, one connection
rejection every 17.58 hours. In the remainder of this article we
employ LSPAN-3 as our lifespan-based unstructured protocol
and denote it as LUDP.

Lifespan-based ideas can be equally applied to loosely-
structured systems, where super-peers are placed at the highest
layer of the network and given greater responsibilities toward
the community than leaf peers. As with LUDP, super-peers
can give preferences to older super-peers when setting up new
connections, while leaf peers could, with higher probability,
opt for older super-peers when deciding to which node to
connect. We use Lifespan-based HDP, or LHDP to denote
this lifespan-based, loosely-structured organizational protocol.

B. Query-Related Strategies

As with organizational protocols, existing query-related
strategies can be easily modified to incorporate lifespan-based
ideas. We now describe in detail various illustrative lifespan-
based strategies for query distribution, caching and replication.

Query dissemination: In the original k-random-walks
query strategy [14], each visited node randomly picks the next
peer where to forward the query walker. While offering good
scalability, this “purely blind” approach is oblivious to peers’
properties or past history. This basic random walk strategy
could be easily extended to give preference to those peers with
estimated longer session times when guiding the forwarding
of a query walker. Depending on the weight that a peer’s es-
timated session time plays in the forwarding decision, a naı̈ve
algorithm could increase the chance of “collision” between
different walkers. Collisions will reduce the effectiveness of
the approach and can even result in the creation of hotspots
at longer-lived peers. For our evaluation we adopt a simple
weighted probabilistic approach which has shown to be highly
effective while avoiding the aforementioned problems.

Caching: Although directly applicable, the effectiveness
of PCX (Path Caching with eXpiration) in less structured P2P
systems is unclear, as different searches for the same object
may take different paths than previous ones, negating the
benefits of caching. Thus, we extend PCX to cover a broader
region around the path yielding what we call Regional Caching
with Expiration (RCX). Under RCX, a peer routing a query
hit message back to the requester will also push the query hit
entry (an <object-ID, hit-peer-ID> tuple) toward some
of its neighbors’ caches. Pushing cache indexes with higher
probability to older peers can increase the number of queries
answered based on these cached entries.

Given the transiency of peer populations, cached entries
must be expired after relatively short times to reduce the num-
ber of stale ones. For this we can employ a cache expiration
technique based on similar ideas – the eviction policy can
consider the estimated session-length of the peer referred to in
the cache entry in determining the maximum age of a given
entry. We have found this strategy to be significantly more
effective than the straightforward approach of simply setting a
constant maximum age for all cache entries and periodically
removing those exceeding it.

Replication: Replication also plays an important role in
improving the performance of queries. By replicating files
at some intermediate peers along the query path, subsequent
queries can be resolved in a more efficient manner. The most
straightforward form of proactive replication “leaves” copies
of the requested object along the paths taken by query or
query hit messages. As with PCX caching, the effectiveness
of this approach in less structured P2P systems is unclear
given that different searches for the same object may take
different paths. Consequently, we modify the path replication
approach slightly by leaving copies of the requested objects
on some neighbors of each peer along the query/query-hit
paths – we refer to this strategy as regional replication
(RRep). Regional replication can easily incorporate lifespan-
based ideas by opting for nodes with longer estimated session
times as target recipients of object copies. These replicas
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would be more likely to remain online longer, potentially
serving a large number of requests. As with our previously
described organizational protocols and query strategies, we
use an age-weighted, probabilistic approach to select the target
peers for replication. Clearly, a node could always constrain
the number of replicas it is willing to host on behalf of others.

C. Determining Peers’ Ages

The effectiveness of the proposed lifespan-based approach
depends in part on the fitness of our session length estimators
and the accuracy of peers’ age information. The high goodness
of fit of our model ensures the former [8]. To improve the
latter, we have designed a lightweight distributed protocol
for peers’ age determination based on previous work on
reputation [31]–[33].

Assume a system composed of mostly selfish peers. Before
a given node can decide who it should attempt connecting to,
it must first determine the age of a set of candidate peers. To
this end, each peer in the system keeps track of other peers
with whom it has interacted (through a connection request, a
ping/pong or a query/reply exchange) and the time of their
earliest and latest interactions. When a given peer, P , wants
to determine the age of a candidate peer C, the following
three-phase protocol can be used:

• Phase 1: Witness Collection: P first requests from C a
list of the peers that C has known the longest and with
whom C has interacted most recently. Peers in this list
potentially serve as witnesses of C’s age.

• Phase 2: Witness Sampling and Trimming: To reduce the
chances of collusion, P first trims proposed witnesses
with suspiciously large interaction windows (outliers),
before sampling a subset of the remaining peers to
construct the final witness list.

• Phase 3: Collecting Testimonies and Determining Age: In
the final phase, P verifies the interaction times C reported
by directly contacting all peers in the final witness list
and determines C’s age as a function (e.g. minimum
or median) of the collected testimonies, i.e. the verified
interaction windows.

The protocol has a number of properties that improves its
resilience to cheating. The age of a peer is never directly
requested from the peer itself, but determined through the col-
lected testimonies of randomly chosen witnesses. In addition,
the trimming of outliers helps in reducing the probability of
small cabals. Although the value determined by our protocol
may not exactly match the “real” age of the peer in question,
it is sufficient for our purposes as our protocols rely less on
the real age of a peer than in its relative seniority among other
candidate peers.

V. EVALUATION

We evaluate the advantage of the proposed lifespan-based
approach to both query-related strategies and organizational
protocols through simulations and wide-area experiments in
PlanetLab. We compare this approach against currently de-
ployed and proposed strategies and organizational protocols.
The goal of this evaluation is to determine the efficacy of

the proposed approach at improving system stability and,
ultimately, enhancing the performance of applications.

A. Query-Related Strategies and Organizational Protocols

For our evaluation, we implemented two random-based
(Unstructured Decentralized Protocol (UDP) and Hierarchical
Decentralized Protocol (HDP)) and two lifespan-based organi-
zational protocols (LUDP and LHDP) as well as a number of
strategies for query routing, caching and replication. For query
routing, we use the original k-random-walk query strategy [21]
and a lifespan-based variation (denote as RQuery and LQuery,
respectively). For caching we implemented Path Caching with
Expiration (PCX), Neighbor Caching with incremental Update
(NCU) and Regional Caching with eXpiration (RCX). For PCX
and RCX, we set the maximum number of object identifiers to
300 and the maximum number of node identifiers per object
to 10. We denote our basic random regional caching as RRCX
and its lifespan-based counterpart as LRCX. We use three
different replication strategies including its most basic form
(denoted as SRep for “Simple Replication”) and the random
and lifespan variations of Regional Replication (RRRep and
LRRep, respectively). For both LRRep and RRRep, we set an
upper-bound on the number of replicas a peer can hold to be
10. Table IV provides a quick summary of of the different
protocols and strategies used throughout the rest of the paper
and their associated acronyms.

B. Metrics

The effectiveness of the proposed approach is evaluated in
terms of the performance improvements to query-related tasks,
as captured by three metrics: Query Resolution Time, Query
Hits and Z Query Satisfaction. Query Resolution Time is the
time between query submission and the arrival of the first
reply. Query Hits is simply the number of query hits associated
with a given query. We also analyze the aggregated query
hit number for all queries issued during each experiment. Z
Query Satisfaction [26] is the percentage of queries achieving
Z satisfaction, i.e. obtaining at least Z query hits.

C. Simulation and Wide-Area Experimental Setup

For the simulation study we employ an in-house, event-
based simulator for P2P systems with support for all member-
ship management related functionalities as well as the evalu-
ated query distribution, caching and replication mechanisms.
We ran simulations using 4 of the 20 traces collected,7 with
a total simulation time of 511,000 seconds, capturing the
lifespan of 150,033 peers. At any time during a simulation run,
there are around 3,000 to 4,000 active peers in the system.

For our wide-area evaluation, we implemented lifespan-
based protocols and strategies as extensions to an open source
Gnutella client [34], thus inheriting all the expected func-
tionality of a typical P2P file-sharing system. As mentioned

7Simulations using the remainder traces yield similar results. On the other
hand, due to memory and CPU limitations of the physical machines, for some
of our simulation scenarios, it was prohibitively expensive to apply more than
4 traces simultaneously.
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Organizational Protocols
Random Lifespan

Unstructured Unstructured Decentralized (UDP) Lifespan UDP (LUDP)
Loosely structured Hierarchical Decentralized (HDP) Lifespan HDP (LHDP)

Query-related Strategies
Random Lifespan

Query k-random walk (RQuery) Lifespan k-random walk (LQuery)
Caching Regional Caching with eXpiration (RRCX) Lifespan RCX (LRCX)

Path Caching with eXpiration (PCX)
Neighbor Caching with incremental Update (NCU)

Replication Regional Replication (RRRep) Lifespan RRep (LRRep)
Simple Replication (SRep)

TABLE IV
LIST OF ORGANIZATIONAL PROTOCOLS AND QUERY-RELATED STRATEGIES AND THEIR ACRONYMS.

earlier, we use random- and lifespan-based k-random-walk
instead of the original flooding in Gnutella as query strategies.
We deployed and ran our system using 150 stable PlanetLab
nodes, distributed throughout the world. At any time during
an experiment, the number of active peers in the whole
system ranges between 200 and 300, evenly mapped to the
set of PlanetLab hosts. Peers’ lifespans are sampled from our
collected traces. Each experiment lasts for 511,000 seconds, or
about six days. To ensure that peers of the different protocols
and/or strategies were exposed to the same network conditions
and host load as their counterpart for fair comparison, all
experiments run the compared configurations concurrently.

Several studies [35], [36] have shown that object popularity
in P2P systems and the Web follows a Zipf-like distribution,
where the probability of the i-th most popular object being
queried is directly proportional to 1/ia. For our evaluation,
the popularity of an object is reflected in both the number of
queries issued for it and its degree of replication. We set a
to 0.6 for the query distribution, and use an object population
of 3,000 for all simulations and 500 for our wide-area evalu-
ation. 8 Every new peer brings with it a number of copies of
objects (currently two), selected according to the same Zipf-
like distribution of object popularity. In our evaluations we
obtained a similar “fetch-at-most-once” behavior and query
distribution to that reported in [30] by making peers issue
queries only for files they do not yet have.

In simulation, unless explicitly stated, we use 4 query
walkers per query, with a TTL value of 20 for each walker. In
the wide-area, each query consists of three walkers with a TTL
value of seven for each. Each active peer issues a query every
600 seconds on average, both in simulation and in wide-area
experiments.

D. Simulation Results

1) Organizational Protocols: We first examine the ad-
vantages of the lifespan-based approach to organization. To
better understand the effects of lifespan-based organizational
protocols, the first three sets of simulations isolate the con-
tributions of caching and replication to query performance.
We first evaluate the benefits of this approach under simple
replication (SRep) without caching. We then demonstrate its

8Object population defines the number of distinct objects in the system, not
the total number of objects which counts each replica of the same objects.
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Fig. 2. Query performance for UDP and LUDP using simple
replication (SRep) and no caching.

advantages employing two different caching strategies, PCX
and NCU, respectively, but without replication. The fourth set
of experiments show results with both caching and simple
replication (SRep + NCU) enabled. These experiments are
mainly discussed in unstructured systems, followed by more
results in loosely-structured ones.

Figure 2 shows the Cumulative Distribution Function (CDF)
of query resolution time (Fig. 2a) and query hit number at
different query percentiles (Fig. 2b) using simple replication
(SRep) and no caching. The advantage of a more stable
overlay in LUDP is clear from both graphs: Figure 2a shows
a reduction of between 50% and 70% in query resolution
time with the lifespan-based LUDP in contrast to UDP, while
Fig. 2b demonstrates 50-75% increase in the query hit number
at various query percentiles. As an example, the dashed lines
in Fig. 2a show that 50% of the queries can be resolved in 0.5
seconds for LUDP while it takes UDP over 1 second to resolve
the same percentage of queries. Similarly, Fig. 2b shows a
median query hit number (corresponding to 50 percentile of
queries) of only 2 for UDP, and as many as 4 for the LUDP
case. The lifespan-based protocol results in considerably larger
aggregated query hit number than UDP (57% more) and higher
query satisfaction at different satisfaction levels (Table V).
Note that all numbers in Table V are relative improvements of
LUDP over UDP. The first simulation scenario - using simple
replication (SRep) and no caching - corresponds to the first
data row in Table V.

For the second and third simulation scenarios, using PCX or
NCU caching strategies without replication, LUDP also shows
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clear advantages over UDP, reducing query resolution time by
40% to 70% for different percentages of queries. We omit the
graphs for PCX or NCU for brevity.

Table V offers the complete picture, showing the relative
aggregated query hit number with different combinations of
replication and caching strategies running over LUDP. UDP is
used as the comparison baseline. Note that when using PCX,
LUDP does not result in higher query hits but in faster query
resolution. NCU with LUDP, on the other hand, yields faster
query responses and 22% more query hits than with UDP.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Query Resolution Time (Second)

C
D

F

CDF of Resolution Time of All Successful Queries

LHDP−(RQuery+SRep)
HDP−(RQuery+SRep)

(a) CDF for query resolution time.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

Query Percentile

Q
ue

ry
 H

it 
N

um
be

r
Query Hit Number for Different Query Percentiles

LHDP−(RQuery+SRep)
HDP−(RQuery+SRep)

(b) Query hit number for different
query percentiles.

Fig. 3. Query performance for LHDP and HDP using simple
replication (SRep) and no caching.

Recall that our lifespan-based protocols differ from UDP
(HDP) mainly at the time of connection establishment, where
a peer gives older peers (super-peers) higher priority when se-
lecting neighbors. Thus, although the paths that query walkers
take in both LUDP and UDP are purely random, a walker in
LUDP still has a better chance of meeting long-lived peers
along its path. In our experiments with simple replication,
long-lived peers are more likely to store more shared objects
than short-lived peers. For the second set of experiments, using
PCX and no replication, long-lived peers contain more valid
cache indexes than short-lived ones and can thus respond to
more queries on behalf of other nodes, resulting in faster
replies. In the case of NCU, long-lived peers have a better
chance of being connected with more neighbors and thus
contain more metadata for shared objects, resulting in higher
query hit ratios, a larger number of hits per query, and shorter
resolution time. Finally, independent of the query, caching
and replication strategies, the more stable LUDP overlay also
reduces the chance of link breakdowns along the query path,
thus guaranteeing safer delivery of a query message and its
associated query hits.

All the results presented so far have intentionally factored
out some components of the query mechanism to better
understand the effects of our approach. We also conducted
experiments with both object simple replication and caching
(SRep+NCU) enabled. Our results show the advantages of the
lifespan-based approach in terms of system scalability. For
example, query performance of k random walk with 2 walkers
for LUDP are almost identical with that of 5 walkers for UDP.
In other words, LUDP achieves similar performance as UDP
while reducing the number of required walkers per query and
its associated costs by almost 60%.

So far we have been looking at lifespan-based organizational

Replication Caching Aggregated Query Satisfaction (Z)
Query Hits 5 10 20

SRep None 1.57 1.21 1.50 1.65
None NCU 1.22 1.13 1.18 1.21
None PCX 1.00 1.00 1.00 1.00
SRep NCU 1.67 1.15 1.22 1.37

TABLE V
RELATIVE PERFORMANCE COMPARISON FOR UNSTRUCTURED

DECENTRALIZED ORGANIZATIONAL PROTOCOLS;
LIFESPAN-BASED (LUDP) OVER RANDOM-BASED (UDP).
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Fig. 4. Query performance for lifespan-based (LQuery) and random-
based (RQuery) query using simple replication (SRep) and no
caching.

protocols for unstructured P2P systems. Illustrating the bene-
fits of lifespan-based protocols for loosely-structured systems,
Fig. 3 shows query performance of the lifespan-based, loosely-
structured LHDP system versus the alternative HDP system.
As the figure shows, 50% of the queries can be answered
in about 0.45 seconds with LHDP, while they take over 1.3
seconds with HDP. LHDP has a query hit number of 9 for 80
percentile queries while HDP can only guarantee a value of
6. Clearly, lifespan-based organizational protocols can equally
benefit loosely-structured P2P systems, yielding faster query
resolution times and higher query hit numbers.
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Fig. 5. Query performance for lifespan-based query (LQuery),
regional caching (LRCX) and replication (LRRep) and its random-
based counterpart (RQuery, RRCX and RRRep).

2) Query-related Strategies: We now evaluate the perfor-
mance of lifespan-based query-related strategies. We show,
for unstructured P2P systems, how lifespan-based strategies
can boost search performance. Applying these strategies to
loosely-structured systems yields even more significant per-
formance gains, which we omit here due to space constraints.

We first demonstrate the benefits of employing lifespan-
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Replication Caching Aggregated Query Satisfaction (Z)
Query Hits 5 10 20

SRep None 2.02 1.46 1.77 2.13
RRep None 1.68 1.14 1.30 1.66
RRep RCX 2.53 1.08 1.20 1.45

TABLE VI
RELATIVE PERFORMANCE COMPARISON FOR QUERY-RELATED
STRATEGIES; LIFESPAN-BASED QUERY-RELATED STRATEGIES

OVER ALTERNATIVE ONES.

based ideas only for the query strategy (LQuery). This cor-
responds to the scenario in which only implicit, simple repli-
cation (SRep) is used upon successful queries, while explicit
replication and caching strategies are disabled. Note that this
is the common case for currently deployed P2P systems.
Figure 4 shows the CDF of query resolution time (Fig. 4a)
and query hit number at various percentiles (Fig. 4b) for k-
random walk query strategy (RQuery) and our lifespan-based
LQuery, respectively. About half the queries can be resolved
in 0.4 seconds when using LQuery, while it takes 0.8 seconds
with RQuery. Similarly, there is a 100% increase in median
query hit number (from 4 to 8) when switching from RQuery
to LQuery. Since no caching or explicit replication is presented
in this scenario, the difference between the two can only be
attributed to query strategies themselves. LQuery walkers, i.e.
random walkers biased toward old peers, are more likely to
run into peers with more shared objects, making possible to
answer queries more effectively.
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Fig. 6. Query performance for lifespan-based query (LQuery)
and replication (LRRep) on a lifespan-based hybrid organizational
protocol (LHDP) and its random-based counterpart (HDP, RQuery
and RRRep).

Next, we determine how much could be gained by com-
bining lifespan-based query, caching, and explicit replica-
tion. Figure 5 shows the query performance of two cases,
one with RQuery, random regional caching with expiration
(RRCX), and random regional replication (RRRep), another
with lifespan-based LQuery, LRCX, and LRRep. As Fig. 5a
shows, the original random approach needs 0.55 seconds to
answer 90% of all queries while the lifespan-based strategies
reduce this to 0.2 seconds. Query hit numbers of the lifespan-
based system (Fig. 5b), are typically two to four times larger
than that of the alternate system at different query percentiles.
These big advantages of lifespan strategies can be easily
explained by earlier description in Subsection IV-B.

Table VI offers a summary of the performance of sev-

eral simulation scenarios where different query, caching and
replication strategies were applied (simple replication (SRep),
regional replication (RRep), and regional caching with expira-
tion (RCX)). As with Table V, in each scenario we show the
relative performance of the lifespan-based strategies over its
random-based counterpart (in terms of aggregated query hit
numbers and degree of query satisfaction). Systems relying
on lifespan-based strategies consistently result in significantly
better performance, both in terms of aggregate query hit
number and query satisfaction at different levels, than random-
based ones.

3) Combined Lifespan-based Protocols & Strategies:
Clearly, the biggest advantage of lifespan-based approaches
would come from the combination of lifespan-based orga-
nizational protocols and query-related strategies. To demon-
strate this, we compare the performance of a purely random-
based with a purely lifespan-based system. The random-based
system uses UDP as the organizational protocol, basic k-
random-walks (RQuery) for query dissemination, plus ran-
dom regional caching (RRCX) and replication (RRRep). The
lifespan-based system employs LUDP as its organizational
protocol, and lifespan-based query (LQuery), caching (LRCX)
and replication strategies (LRRep). Combining the advantages
of lifespan-based approaches at both levels results in between
three- and five-times increase in query hits at different query
percentiles, and over four-time speed-up for query resolution.

The advantage of combining lifespan-based organizational
protocols and query-related strategies also holds for loosely-
structured systems. Figure 6 compares the performance of two
loosely-structured P2P systems: a random-based one using
HDP as its organizational protocol, along with RQuery and
RRRep; and a lifespan-based one relying on LHDP for its
organizational protocol, and LQuery and LRRep for query
dissemination and replication. No caching strategy is used
here, since super-peers already provide object index caching
to leaf-peers. As Fig. 6 illustrates, the combined benefits of
lifespan-based ideas results in a significant improvement in
query resolution time (resolving 80% queries in about 0.2
seconds instead of 1.0 seconds) and median query hit number
(from 12 to 37 hits).

E. Wide-Area Results

We first illustrate the effectiveness of lifespan-based orga-
nizational protocols in wide-area. All queries take two purely
random walkers, no caching or proactive replication strategies
are used. Figure 7a compares CDF of query resolution time
of the LUDP and UDP systems in the wide area. The results
show that query resolution time is typically two times faster
for LUDP than for UDP. Figure 7b gives query hit number
distribution, i.e., the percentage of queries that have a certain
number of hits. For this experiment, most queries (over 60%)
on the lifespan-based LUDP system have a query hit number
of 3, while most queries (44%) on the UDP deliver only one
hit. In general, LUDP protocol delivers over 40% more query
hits than UDP.

We also evaluated the wide-area performance of our
lifespan-based query-related strategies. Two systems were de-
ployed, one with LQuery for query and LRRep for replication
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Fig. 7. Query performance for lifespan and random UDP in
PlanetLab.

and the second one employing RQuery and RRRep. Both
systems use UDP as the organizational protocol. As Fig. 8a
shows, lifespan-based strategies deliver between 2-3X faster
query resolution. Figure 8b indicates a much higher chance
for a lifespan-based query to return 5 or more query hits
than its random equivalent. Overall, lifespan strategies provide
2.11 times more query hits than their alternatives. These
results, consistent with those found through simulation, clearly
demonstrate the advantages of using lifespan-based ideas for
query-related strategies.
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Fig. 8. Query performance for the combined lifespan query and
replication strategies (LQuery and LRRep) and their random alter-
native (RQuery and RRRep) in PlanetLab; we employ UDP as the
organization protocol in both experiment.

VI. RELATED WORK

Our work builds on many related previous efforts. Due to
space constraints, this section only briefly describes some of
the work not already addressed in previous sections.

Some related studies adopt a model of uniformly random,
concurrent node failure when evaluating the impact of churn
on single peers or the overall network [24], [37]–[40]. More
realistic failure models [8], [9], [13], [29] better take into
account the intrinsic behavior of P2P user populations, with
most users spending few minutes per day searching for content
to download and a few others remain logged in for weeks
exhibiting a more server-like behavior (as summarized by Rhea
et al. [6]).

A number of efforts have studied churn and its implications
to P2P systems. A few of these studies have opted for passive
monitoring techniques. For example, an early study by Sen and

Wang [28] analyze P2P traffic collected passively at multiple
border routers across a large ISP network. The authors report
high-level system dynamics with ontime, the duration an IP
address is active, showing a heavy-tailed distribution. More
recently, in their study on workload characterization of P2P file
sharing, Gummadi et al. [30] report session lengths based on
passive monitoring of a router at the University of Washington.
It has been pointed out [11] that passive monitoring studies
may tend to underestimate peers’ lifespans as some peers may
not be continuously generating traffic through the instrumented
host.

Through active probing of 17,125 peers during 60 hours,
Saroiu et al. [13] found a median peer session time ∼60
minutes. Chu et al. [27] present results from a considerably
longer experiment on a smaller set of peers (5,000 IP:port
pairs). Their results show a highly transient population and
significant time-of-day effects. Both Saroiu et al. [13] and
Chu et al. [27] measured session times by actively probing
previously collected TCP/IP addresses of peers following an
approach that can only determine if a node is or not accepting
TCP connections in the requested port without distinguishing
what application is connected to it. In their study on availabil-
ity in the Overnet DHT [29], Bhagwan et al. rightly point out
the potential effects of aliasing on modeling host availability.9

IP address aliasing can result in great overestimation of the
number of hosts in the systems and the underestimation of their
availability. A more recent work by Nurmi et al. [12] discuss
the suitability of different statistical distribution for describing
machine availability in three different data sets. Their results
indicate that Weibull model more accurately represent machine
availability in some of these settings. In contrast, our work
characterizes the lifespan distribution of individual sessions,
during which a peer’s IP:port tuple will not change, and builds
on this characterization to propose new organization protocols
and query-related strategies. The different algorithms we have
presented throughout this paper rely on the predictability of
peer’s remaining time based on its current uptime. In a recent
study [11] Stutzbach and Rejaie present a thorough analysis of
churn in Gnutella, Kad and BitTorrent and, while questioning
the use of Pareto distribution to describe the session lengths,
they show that current uptime is still a good indicator of
remaining uptime in both Gnutella and Kad.

Leonard et al. [9] investigate the resilience of random graphs
to lifespan-based node failures and derives the expected delay
(and associated probability) before a peer is forcefully isolated
from the graph. Godfrey et al. [10] presents a comparative
study of different strategies aimed at reducing churn rate by
intelligently selecting a subset of the available nodes. The
compared strategies differ in the amount of node information
they rely on for selection and in whether they replace a failed
node with a new one. The authors show, through trace-based
evaluation, that replacement strategies can yield significant
reduction in churn over fixed strategies, and that random
replacement can outperform a preference-list strategy, which
occurs because of optimizing for a metric other than churn,

9Aliasing effects could be due, for example, to the use of DHCP and NATs,
as well as the sharing of a host by multiple users.
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in scenarios with fairly skewed distributions of session times.
Godfrey et al. also explore how different designs or param-
eter choices in distributed systems can “accidentally” lead
to particular replacement strategies. Our work experimentally
derives the distribution of session times and proposes and eval-
uates a number of organizational protocols and query-related
strategies that leverage this to yield systems with performance
characteristics more resilient to their environments’ expected
high churn.

Other related efforts have focused on the performance
and maintenance cost of DHT-based systems in the face of
churn [6], [41]–[43]. Although originally targeted at non-DHT
protocols, our lifespan-based approach could be straightfor-
wardly combined with some of the techniques proposed in
the literature to yield better structurally churn-resilient DHT
systems. We plan to explore this as part of our future work.

This research is partially motivated by the seminal work
of Harchol-Balter and Downey [44] on process lifetime dis-
tribution and its implications on load-balancing techniques.
The authors measured the distribution of Unix processes and
propose a UBNE (used-better-than-new-in-expectation) distri-
bution that fits it well. Based on their finding, Harchol-Balter
and Downey present a new policy for preemptive process
migration in clusters of workstations.

VII. CONCLUSIONS

This paper addresses the problem of highly transient popu-
lations in unstructured and loosely structured P2P systems. Us-
ing a number of illustrative organizational protocols and query-
related strategies, we present trace-driven simulation and wide-
area experiment results that illustrate the performance advan-
tages of considering peers’ estimated session time as a key
system attribute in the design of churn-resilient P2P systems.
The benefits of lifespan-based ideas are not constrained to
control-related traffic, but extend to applications, resulting in
improved query satisfaction and resolution time, as well as
significantly higher system scalability. An area of future work
is to understand the implications of partial adoption of the
presented approach.
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