Lottery Scheduling for Resource Management

Lottery Scheduling: Flexible Proportinal-Share Resource Management [SOSP'94]

Carl Waldspurger and William Wheil MIT Laboratory for Computer Science

Presented by Stefan Birrer

CS-443 Advanced Operating Systems – Spring 2005

Motivation

- Scheduling computations
 - Complex & challenging in multithreaded systems
 - Rapid, dynamic control
- Existing priority-based schemes
 - Poorly understood
- Existing fair share/microeconomic schedulers
 - Assumptions
 - Overheads

Need for more an efficient scheduling algorithm

Lottery Scheduling

- Randomized mechanism
- Proportional-share resource management
- Flexible control over relative execution rates
- Generalizable
 - I/O bandwidth
 - Memory
 - Access to locks

Lottery Scheduling

- Lottery tickets
- Allication is determinded by holding a *lottery*
- Resource is granted to *winning ticket*
- Effective allocation is proportinal to number of tickets hold
- Probabilistic fair
- No starvation
 - Every client with tickets eventually wins a lottery
- Tickets may be transferred
 - Solves priority inversion problem

Lottery Scheduling

- Ticket inflations
 - Trusted environments
 - Boost performance of client by generating more tickets
- Ticket currency
 - Across logical boudnaries
- Compensation tickets
 - If client consume only a fraction of the allocated resource quantum

Implementation

- Mach 3.0
- 25 Mhz MIPS-based DECStation 5000/125
- Scheduling quantum 100 milliseconds
- Pseudo-random number generator
 - Park-Miller algorithm
 - 10 RISC instructions
- Lottery
 - "move-to-front" heuristic
 - Tree of partial ticket sums

Implementation

currency

• Ticket Currency

Evaluation

- Quantify
 - Flexibility
 - Responsivness
 - Control efficiency
- Workload
 - Compute-bound benchmark
 - Monte-carlo numerical intergration
 - Multithreaded client-server application
 - Competing MPEG video viewers

Fairness

Fairness

Flexible Control

Flexible Control

Client-Server Application

• Client temporarily transfer tickets to server

Mutlimedia Application

Change allocation ratio

Load Insulation

• Two untrusted domains

Synchronization Resources

Conclusions

- Rapid, dynamic resource allocation
- Lottery scheduling
 - Proportional share
 - Probabilistically fair
 - Fast
 - Transferable
 - Adjustable
 - General purpose

Lottery Scheduling for Resource Management

?

CS-443 Advanced Operating Systems – Spring 2005