
Presentation on “Vanish:

Increasing Data Privacy with

Self-Destructing Data”

Presented by William Ng

Needs for vanishing data

Emails, facebook messages or any web
contents that you created could come
back and be used against you
Sensitive discussion on divorce

Hard to control where the content is

Hard to act on the content in remote
location

Encryption password could be forced to be
given up

Solution

Encrypt the content with a key and store

the key in a high-churn globally-distributed

DHT system

Once it reaches the timeout value, the key

would be erased from the DHT and forever

lost. The content will not be readable

without the key.

Implemented application

FireVanish: Firefox plugin to be used on

Gmail, facebook, or Google Docs, any

Web page text input box

Simple, intuitive, wide-application

Vanishing files

Let’s get into the details

DHT?

 Distributed Hash Table system

 Like an array with index and data pair

 Huge number of index (160-bits
keyspace in Vuze = ~1048 indexes)

 Each node in the network are
associated with an index (or node ID).
It stored all the data with indexes
closest to its ID.

DHT operation

Using the hash function, a node found out

an index that corresponds to the specific

data

 It performs “lookup” to find out which

node responsible for the index (could be

different algorithm)

 It can then either ask that node to “store”

the data or to “get” the data

Vanish usage of DHT

 In normal use case of DHT, use hash function to

find out the index of the desired data

 But in the case of Vanish, index and data are

not related

 Vanish encrypts the content with key K, split it

into N keys -> data to be stored

 Uses another random key L as seed of random

generator to generate N indexes

 VDO consists of (L, C, N, threshold)

They pick Vuze DHT

 Vuze DHT

Open to be joined by any users

Millions plus nodes, geographical distributed through the

world across different nations

High churn, user leaving and entering within the network

(average duration around 2 hours – see appendix)

Fixed 8 hours timeout

OpenDHT

Restricted membership

Variable time out up to 1 week

Attacks and defense

Overall theory in defense

 Available until expiration

 Automatically becomes unreadable, even without actions of the user

 No secure hardware required from both users

 No centralized system (unlike Hushmail) to be comprised by the
government or hackers

User, email client, internet, DHT nodes

User User

Gmail Gmail

Internet

DHT nodes

Attack strategy 1: Decapsulate VDO prior

to Expiration

User User

Gmail Gmail
Attack

Attack Decapsulate and store all

VDO at the email client

Defense: encrypt the VDO with another

key encryption scheme like PGP or GPG

User User

Gmail Gmail
Attack

Attack

Communication encrypted with key,

only readable by user

VDO expired after keys given up
keykey

keykey

key

key

Attack strategy 2: Sniff User’s internet

Connection

User User

Gmail Gmail

Attack

Attack

ISP or employer intercept all

packets, including VDO or

any encryption key

Attack

Attack

key

Defense: use Tor

User User

Gmail Gmail

Attack

Attack

Attack

Attack

Use Tor to tunnel the communication

through remote machines

key

key

Attack DHT!

User User

Gmail Gmail

Attack

Attack

Intergrate into DHT and get

the keys

Attack

Attack

Attack

Attack

Attack DHT: “store” sniffing

Join the network and get

as much keys and index

pairs as possible

Periodic push from

neighbors

214

12

10

7

5

0

3

4

6

8
9

11

13

15
1

keys

keys

How to tweak parameters to defend

against store sniffing

 Attackers needs to collect the keys in 8 hours!

 Have to do it 24x7 and store all of them

Cost to attackers using store sniffing

Using 3 hour churn model, N=50, 90%

threshold, in order to comprise 25% of

VDO on Vuze, it is estimated to need

87,000 nodes

= $860K per year

Attack DHT: “Lookup” sniffing

Attackers don’t know what is valid key in

the 160-bits keyspace

Use the “lookup” request that comes to

them

Defense: change the local vuze node, so it

obfuscates the key

Attack DHT: Sybil attack

Assume different

identities in a short

period of time

Each time it joins

the network, it gets

keys from

neighboring node

Attack used in

Unvanish!

214

12

10

7

5

0

3

4

6

8
9

11

13

15
1

keys

keys

keys

Data from the paper “Unvanish”

One machine can emulate 500 Vuze identities at

the same time

 Selectively store the data which looks like

Vanish encryption key, guessing it from the size

 Able to launch the attack using only 10 Amazon

EC2 instances, only less than $5000 a year

 Decrypt 100% VDO instances in the default

security setting, which N=10, threshold = 70%;

decrypt 79% VDO, which N=50, threshold = 90%

Comments on Sybil attacks on our paper

“Vanish”

Vuze DHT has planned an upgrade to

guard against Sybil attack

However, from “Unvanish”, the Vuze DHT has

not yet implement this upgrade. Vuze DHT has

a different goal in mind than Vanish.

Use openDHT or multiple DHT or design

its own DHT system

That is it. But one side note…

Could data sanitization be a problem?

Could the browser or the OS cached the

decrypted copy?

And we need “secure methods for overwriting

data on disk [31], encrypting virtual memory [50],

and leveraging OS support for secure

deallocation” ?????

Appendix / backup slides

2007 data on number of nodes

responding to probe over 48 hours

From “Profiling a Million User DHT”

