
1



I. Introduction

II. Stateless Transport Protocol

III. Trickles Server API

IV. Client-Side Processing

V. Implementation & Evaluation

VI. Conclusion & Discussion

2



 Enables two systems to establish a 

connection and exchange streams of 

data 

 Guarantees accurate delivery of data in 

sequential order

 Both systems hold per-connection state

3



 Problems with State

› State must be reconstructed if disconnected

 Connection failover and recover is difficult 

and non-transparent

› Per-client resources, thus limits scalability

› Vulnerable to DoS attacks

4

3 way handshake

SYN Flood

http://en.wikipedia.org/wiki/File:Tcp_normal.png
http://en.wikipedia.org/wiki/File:Tcp_synflood.png


 Make one end stateless (server)

 State kept on other end (client)

 Encapsulated state (continuations) are 

pushed from the server to client

 Client includes the continuation with 

subsequent requests

5



 Continuations

› Encapsulate server-side state

› Piggyback on request and data packets

› Secured with tamper-resilient MAC

› Enables any server replica to handle the 
request

6



 Effective utilization of resources

› Improved Scalability

› Resistant to Denial of Service attacks

 Services are easily replicated to other 

Servers

 Backwards-Compatible with TCP

7



 Effective utilization of resources

› Improved Scalability

› Resistant to Denial of Service attacks

 Services are easily replicated to other 

Servers

 Backwards-Compatible with TCP

8

SYN/

ACK



› Transparent failure recovery

› Geographic anycast

› Packet-Level Load Balancing (Trickles vs. TCP)

9



 Provides the necessary information for 

the server to resume processing

 Client Maintained

 Transport Continuations – Kernel Level/ 

TCP Congestion Control

 User Continuations – Application Level 

Data

10



Server Client
Transport

Cont 0

User

Cont 0

11



Packet kServer Client
Transport

Cont 0

User

Cont 0

Transport

Cont 0

User

Cont 0

12



Packet kServer Client
Transport

Cont 0

User

Cont 0

Transport

Cont 0

User

Cont 0

Transport

Cont 0

User

Cont 0

Transient State

13



Packet kServer Client

Transport

Cont 1

User

Cont 1

Transport

Cont 0

User

Cont 0

Transport

Cont 0

User

Cont 0

Transport

Cont 0

User

Cont 0

Transient State

14



Data k

Transport

Cont 1

Packet kServer Client

Transport

Cont 1

User

Cont 1

Transport

Cont 0

User

Cont 0

Transport

Cont 0

User

Cont 0

Transport

Cont 0

User

Cont 0

User

Cont 1

Transient State

15



Data k

Transport

Cont 1

Packet kServer Client

Transport

Cont 1

User

Cont 1

Transport

Cont 0

User

Cont 0

Transport

Cont 0

User

Cont 0

Transport

Cont 0

User

Cont 0

User

Cont 1

Transient State

16



Data k

Transport

Cont 1

Packet kServer Client

Transport

Cont 1

User

Cont 1

Transport

Cont 1

User

Cont 1

Transport

Cont 0

User

Cont 0

Transport

Cont 0

User

Cont 0

Transport

Cont 0

User

Cont 0

User

Cont 1

Transient State

17



 Maintaining state integrity

› MAC prevents tampering with protected 

state in transport continuations

› Range of unique nonces attached to each 

packet used to compute SACK proofs

 Protection against Replay

› Requires some state, but independent of the 

number of connections

› Hash table keyed on transport MAC

18



 A sequence of requests and responses

 Congestion control determines when to 

split and terminate by calculating 

current window size

19



 Round-trip delay in state updates

 Prefix Property – given SACK proof L, 

proof L’ sent after contains prefix L

20



 Emulates TCP Reno cwnd – 3 modes

1. Slow Start/Congestion Avoidance

 When cwnd is increased, the trickle is split

∙ Slow Start: increase on every packet

∙ Congestion Avoidance: increase every cwnd packets

21



 Emulates TCP Reno cwnd – 3 modes

2. Fast Retransmit/Recovery

› Entered when SACK contains loss

 Retransmits lost packet

 cwnd is halved and terminates trickles

› When finished, enter congestion control 

mode

22



 Emulates TCP Reno cwnd – 3 modes

3. Retransmit Timeout

› Client kernel triggers timeout

 resets cwnd to original value

 Sets ssthresh to half of cwnd (before first lost)

› When finished, enter slow start mode

23



 Stored in shared memory

 Packets generate events/minisockets

24



 Represents the remote end-point

 Send/Receive data

 Destroyed after event is processed

 Includes user 

continuation and 

congestion 

control

25



› Client application is not aware of Trickles, but 

uses a Berkeley sockets interface

 Kernel maintains transport protocol

› Creates requests from transport continuations

› SACK Proofs

› Triggers Retransmit Timeout

 Manages user continuations

› Input

› Output

26



 Linux

› 15,000 lines of code

› AES Encryption

 PlanetLab

› Real Internet 

Conditions

Each bar represents the average of all PlanetLab nodes that are within 
a 50ms bucket, sorted by latency

Average throughput for a 160kB file

27



 Aggregate 

Throughput

 Memory 

Utilization

clients connects to a single server over a 100Mb link

28



 Instantaneous

Failover
Disconnection occurs at t = 10 seconds.

29



 Trickles is similar to TCP in efficiency and 
reliability, but with better resource 
allocation

 Offers packet-level load-balancing, 
instantaneous failover, transparent 
connection migration

 Servers may be replicated and 
geographically distributed

 Trickles is backward compatible with 
existing TCP clients and servers

30



 Any Disadvantages?

 Overhead costs

› Transport continuation size is 75+12m 

 (m= number of loss events)

› TCP header size is between 20 – 60 bytes

31


