INSTITUTE OF ADVANCED

| SPACE-TIME ASTROPHYSICS |

e abm;}?* %' /" mj%gﬁ

n =7 f"ﬁ @
F£ %éja 24“/3.;{ Mmo <-—®J v

T

CHRIS MAIDEN.

I can never remember either.
Is it 'Spring back, fall forward"?

Fabian E. Bustamante, Winter 2010

Time and Global State

Today

» Clock synchronization
» Logical clocks

» Global state

Measuring time out in the world

» Time has historically been measured astronomically

* A solar day
— Time between two consecutive transits of the Sun

— Transit of the Sun — when the Sun reaches its highest
apparent point in the sky

» Solar second
— 1/(24*3600) of a solar day

» But the period of earth rotation is not constant!
— Slow down due to tidal friction and atmospheric drag
— ~300 million years there were about 400 days per year

EECS 345 Distributed Systems
Northwestern University

Atomic clocks

» Avoid problems with astronomical-based
measurement

» Count transitions of Cesium 133 atom

— A second — time to make 9,192,631,770 transitions (same as mean
solar second when introduced)

— TAI (International Atomic Time) the avg of several atomic clocks

» Universal Coordinated Time (UTC)

— Problem — 86,400 TAI sec is 3msec < mean solar day today
— Solution — add leap sec if TAI & solar time differ by 800 msec
» UTC seconds broadcasted on WWV shortwave radio
(error > +/-10msec)

EECS 345 Distributed Systems
Northwestern University

Physical clocks

+ Hardware clock based on count of oscillations in a
crystal

» Let's call this C(t), the value of the clock on machine
pwhen UTC is t
— Ideally C,(t) =t for all p and all t — C,(t) = dC/dt = 1, but
— Clocks drift (i.e. count time at different rates), so bound drift

Clock time, C p = = q

UTC, t

EECS 345 Distributed Systems
Northwestern University

Clock synchronization

» Two modes of synchronization

— External — synchronize with a authoritative, external source of
time; for a synchronization bound D > 0, and for a source of
time S, [S(t) — C(t)] <D fori=1..N

— Internal — synchronize the clock among them; |Ci(t) — Ci(t)| <D
fori,j=1..N

* Synchronization in a synchronous system

— Bounds are known for drift rates and maximum message
transmission delays

— Process sends time to another; if variation on transmission
delay is u = max - min(max + min)/2 then t + (max + min)/2
gives a skew of at most u/2

— But most distributed systems are asynchronous — no bounds
on delays!

EECS 345 Distributed Systems
Northwestern University

Clock synchronization

» External - Cristian’s algorithm, ~NTP

— Every machine asks a time server for the accurate time, gets t
In a message

— Settimetot+ T,,,,4/2, assuming equal split of transmission
time
» Internal - Berkeley
— Let a time server poll all machines periodically, calculate an
average, and inform each host of to adjust its time
» NTP service

— Provided by network of servers with primary servers
connected to time source, secondary servers to ...

— NTP servers synchronize with others via multicast, procedure
call or symmetric mode

EECS 345 Distributed Systems
Northwestern University

Abstract model of a distributed system

A distributed system — a collection P of N processes p
Processes communicate (only) by sending messages

Each process p; has a state s, which, in general,
transform when executes

Processes execute a series of actions — send/receive,
or transform Its state — an event is the occurrence of a
single action

Events within a process can be place in single, total
ordering, a relationship between events denoted by —,

History of a process — the series of events that take
place within it

EECS 345 Distributed Systems
Northwestern University

What happened before

» Without perfectly synchronized clocks, how can we
order events in a distributed system?

— Events in a single process occur in the order the process
observes them

— When a message is sent between two processes, the sending
occurs before the receiving
» The partial ordering that results from this — happened-
before relation

— Ife and e’ are two events in the same process, and e—g’ (e
comes before €’), then e—e’

— If e is the sending of a message, and e’ is the receipt of that
message, then e—e’

— If e—se’and e’—e”, then e—e”

EECS 345 Distributed Systems
Northwestern University

Lamport clocks

» To maintain a global view on the system’s behavior
that is consistent with the happened before relation

» Lamport clock
— A monotonically increasing software counter
— Each process p; has its own Lamport clock L, that uses to
timestamp its events (L;(e) is the timestamp of e)
» To capture the happened-before relation

— LC;: If e and e’ are events in the same process, and e—e€’,
then Li(e) < Li(e’); i.e. L, is incremented before event

— LC,: If a processes sends a message
* It piggybacks with it the value t = L,

* On receiving a message, a process p; computes L; := max(L;, t) and then
applies LC,

» To create a total order we can take into account the
processes ids (practical but without physical meaning)

EECS 345 Distributed Systems
Northwestern University

Lamport clocks

Sequence of events

Y g
P2 ®
C

Vv

/;

P
’ 'e T

Lamport clocks
1 2

) @) @)
w N [
QJ‘
CD. =
¢ >
H
O‘ o8
~
Z
N
-0 o
V V YV

EECS 345 Distributed Systems
Northwestern University

Problem with Lamport clocks

» Observation: Lamport clocks do not guarantee that if
L(e) < L(e’), e causally preceded e’:
— E.g. L(b) < L(f), but (b — f)

) 1 2
1—@ @ 5
a Ng 4 5
p2 O >
C d g M
1 3 m, 6

o

w
o
o
v

EECS 345 Distributed Systems
Northwestern University

Vector clocks

» Vector clock — an array of N integers for a system of N
processes

» Each process P; keeps its own vector V;; initially V[j] =
O fori,j=1..N

» Before executing aneventP,-V[i1]:=V,[i]+1

* When P; sends a message m to P;,

— It executes the previous step
— It sets m’s (vector) timestamp ts (m) equal to V,

» Upon receipt of a message m

— P; adjusts its own vector by setting V; [k | := max{V, [k], ts
(m)[k]} for each k (it “merges” both vectors)
— It executes first step

EECS 345 Distributed Systems
Northwestern University

Comparing vector clocks

o« V=V iff V[j] = V'[j] forj = 1..N
o V<V iff V[j] < V[j] forj = 1..N
e V<VIffVSVAVIZV

» Two events e and e’ are concurrent (e || €') if neiher
V(e) = V(e’) nor V(e) 2 V(e)
» Question: What does V[j] = k mean?

(100) (200)

E t\(210)(223)(233)

A\

Vv

h

Ps o oo M,

EECS 345 Distributed Systems
Northwestern Universi ity

Vv

Global states

» Checking if a property of a distributed system is true

* Examples

— Distributed garbage collection — is an object garbage? Is there
a reference to it somewhere?

— Distributed deadlock situation
— Distributed debugging

» Detecting a condition like any of these is the same as
evaluating a global state predicate

» Global state, mathematically any set of local states
can be put together to form it S = (s, S,, ..., Sy)
— Which of those is meaningful?

EECS 345 Distributed Systems
Northwestern University

Global states

» Cut — subset of its global history
— C=het, Uhe2,U ... heN
— Set of events {e°. : | = 1 ..N} is the frontier of the cut

» A cut is consistent if, for each event it contains, it also
contains all the events that happened- before it

— A consistent global state corresponds to a consistent cut

— A linearization or consistent run — an ordering of events in a
global history that is consistent with happened-before

— A state S’ is reachable from S if there is a linearization that
passes through S and then S’

0 1 2 i 3
e 1 e 1 e 1 Con&stentkcut e .

PL—e—reo—=@
) ~. ’X‘

- o |0 m,
Inconsistent cut e 2 612 622

v

Vv

EECS 345 Distributed Systems
Northwestern University

Chandy and Lamport’s snapshots

» Chandy & Lamport’s algorithm
— Useful to determine the global state of a distributed system
— Records states locally to a process, gathering is extra

» |t assumes that
— Neither channels nor processes fail (comm. is reliable)
— Channels are unidirectional and FIFO
— Graph of processes and channels is strongly connected
— Any process many initiate a global snapshot at any time

— Processes can continue with what they were doing while the
snapshot is being taken

EECS 345 Distributed Systems
Northwestern University

Chandy and Lamport’s algorithm idea

» Basic idea — each process records its state and, for
every channel, the set of messages sent to it

» Use a special message — marker — with a dual role
— Prompt receiver to save its own state
— Help determine which message to include in the channel state

» Defined by two rules

— Marker receliving rule — obligates a process to save its state
and help defined the state of the channel

— Marker sending rule — obligates a process to send a marker
after having recorded their state and before sending anything
else

EECS 345 Distributed Systems
Northwestern University

Chandy and Lamport’s algorithm

» Algorithm is defined by two rules

— Marker receiving rule for process p;
* On p;s receipt of a marker message over channel c:
if (p; has not yet recorded its state) it
records its process state now
records the state of c as the empty state
turns on recording of messages arriving over other
incoming channels
else
p; records the state of c as the set of messages it has
received over c since it saved its state
end if

— Marker sending rule for process pi

* After p, has recorded its state, for ach outgoing channel c:
p; sends one marker message over c
(before it sends any other message over c)

EECS 345 Distributed Systems
Northwestern University

Taking a snapshot

* Two processes trading in widgets at a rate of
$10 per piece
* p, has already received and order of 5 widgets

* p, records its state in S,, emits marker and
follows with another request

<$1000,0> <$50,2000>
Global state S, C2
< Cl
<$900,0> (order 10,$100), M <$50,2000>

Global state S, C2

Cq

EECS 345 Distributed Systems
Northwestern University

Taking a snapshot

» Before p, gets the marker it sends the 5 widgets

» Then gets the marker and record its state (<$50,
1995>) and that of channel c, as empty

* Then sends a marker on c,

<$900,0> (order 10,$100), M <$50,1995>

Global state S, C2

~

C1 (five widgets), M

EECS 345 Distributed Systems
Northwestern University

Taking a snapshot

 When p, gets the marker, it records the state of c,

» Final recorded state is p;: <$1000, 0>, p,: <3$50,
1995>, c,: <(five widgets)>, c,: <>
» State Is consistent

* Note that it differs from all global states the system
went through

<$900,5> (order 10,$100) <$50,1995>

Global state S, C

Cq

EECS 345 Distributed Systems
Northwestern University

Taking a snapshot

<$1000,0> <$50,2000>
Global state S, C2
< Cl
<$900,0> (order 10,$100), M <$50,2000>
Global state S, C2
< c:
<$900,0> (order 10,$100), M <$50,1995>

Global state S, C2 ‘

C1 (five widgets)

<$900,5> (order 10,$100) <$50,1995>

Global state S, C2

Cq

Final recorded state is p,: <$1000, 0>, p,: <$50, 1995>,
c,: <(five widgets)>, c,: <>

EECS 345 Distributed Systems
Northwestern University

