
Time and Global State

Today

Clock synchronization

Logical clocks

Global state

Fabián E. Bustamante, Winter 2010

Measuring time out in the world

Time has historically been measured astronomically

A solar day

– Time between two consecutive transits of the Sun

– Transit of the Sun – when the Sun reaches its highest

apparent point in the sky

Solar second

– 1/(24*3600) of a solar day

But the period of earth rotation is not constant!

– Slow down due to tidal friction and atmospheric drag

– ~300 million years there were about 400 days per year

2EECS 345 Distributed Systems

Northwestern University

Atomic clocks

Avoid problems with astronomical-based

measurement

Count transitions of Cesium 133 atom
– A second – time to make 9,192,631,770 transitions (same as mean

solar second when introduced)

– TAI (International Atomic Time) the avg of several atomic clocks

Universal Coordinated Time (UTC)
– Problem – 86,400 TAI sec is 3msec < mean solar day today

– Solution – add leap sec if TAI & solar time differ by 800 msec

UTC seconds broadcasted on WWV shortwave radio

(error > +/-10msec)

3EECS 345 Distributed Systems

Northwestern University

Physical clocks

Hardware clock based on count of oscillations in a

crystal

Let’s call this Cp(t), the value of the clock on machine

p when UTC is t

– Ideally Cp(t) = t for all p and all t – C’p(t) = dC/dt = 1, but

– Clocks drift (i.e. count time at different rates), so bound drift

4EECS 345 Distributed Systems

Northwestern University

Clock synchronization

Two modes of synchronization

– External – synchronize with a authoritative, external source of

time; for a synchronization bound D > 0, and for a source of

time S, |S(t) – Ci(t)| < D for i = 1..N

– Internal – synchronize the clock among them; |Ci(t) – Cj(t)| < D

for i,j = 1..N

Synchronization in a synchronous system

– Bounds are known for drift rates and maximum message

transmission delays

– Process sends time to another; if variation on transmission

delay is u = max - min(max + min)/2 then t + (max + min)/2

gives a skew of at most u/2

– But most distributed systems are asynchronous – no bounds

on delays!

5EECS 345 Distributed Systems

Northwestern University

Clock synchronization

External - Cristian’s algorithm, ~NTP

– Every machine asks a time server for the accurate time, gets t

in a message

– Set time to t + Tround/2, assuming equal split of transmission

time

Internal - Berkeley

– Let a time server poll all machines periodically, calculate an

average, and inform each host of to adjust its time

NTP service

– Provided by network of servers with primary servers

connected to time source, secondary servers to …

– NTP servers synchronize with others via multicast, procedure

call or symmetric mode

6EECS 345 Distributed Systems

Northwestern University

Abstract model of a distributed system

A distributed system – a collection P of N processes pi

Processes communicate (only) by sending messages

Each process pi has a state si which, in general,

transform when executes

Processes execute a series of actions – send/receive,

or transform its state – an event is the occurrence of a

single action

Events within a process can be place in single, total

ordering, a relationship between events denoted by →i

History of a process – the series of events that take

place within it

7EECS 345 Distributed Systems

Northwestern University

What happened before

Without perfectly synchronized clocks, how can we

order events in a distributed system?

– Events in a single process occur in the order the process

observes them

– When a message is sent between two processes, the sending

occurs before the receiving

The partial ordering that results from this – happened-

before relation

– If e and e’ are two events in the same process, and e→ie’ (e

comes before e’), then e→e’

– If e is the sending of a message, and e’ is the receipt of that

message, then e→e’

– If e→e’ and e’→e’’, then e→e’’

8EECS 345 Distributed Systems

Northwestern University

Lamport clocks

To maintain a global view on the system’s behavior

that is consistent with the happened before relation

Lamport clock

– A monotonically increasing software counter

– Each process pi has its own Lamport clock Li that uses to

timestamp its events (Li(e) is the timestamp of e)

To capture the happened-before relation

– LC1: If e and e’ are events in the same process, and e→e’,

then Li(e) < Li(e’); i.e. Li is incremented before event

– LC2: If a processes sends a message

• It piggybacks with it the value t = Li

• On receiving a message, a process pj computes Lj := max(Lj, t) and then

applies LC1

To create a total order we can take into account the

processes ids (practical but without physical meaning)

9EECS 345 Distributed Systems

Northwestern University

Lamport clocks

10EECS 345 Distributed Systems

Northwestern University

p1

p2

p3

a m1b

c

e

d

f

m2

p1

p2

p3

a m1b

c

e

d

f

m2

1 2

3

1

4

5

Lamport clocks

Sequence of events

Problem with Lamport clocks

Observation: Lamport clocks do not guarantee that if

L(e) < L(e’), e causally preceded e’:

– E.g. L(b) < L(f), but !(b → f)

11EECS 345 Distributed Systems

Northwestern University

p1

p2

p3

a m1b

c

e

g

h

m3

1 2

3

1

5

6m2

f

d

4

3

Vector clocks

Vector clock – an array of N integers for a system of N

processes

Each process Pi keeps its own vector Vi; initially Vi[j] =

0 for i,j = 1..N

Before executing an event Pi - Vi [i] := Vi [i] + 1

When Pi sends a message m to Pj,

– It executes the previous step

– It sets m’s (vector) timestamp ts (m) equal to Vi

Upon receipt of a message m

– Pj adjusts its own vector by setting Vj [k] := max{Vj [k], ts

(m)[k]} for each k (it “merges” both vectors)

– It executes first step

12EECS 345 Distributed Systems

Northwestern University

Comparing vector clocks

V = V’ iff V[j] = V’[j] for j = 1..N

V ≤ V’ iff V[j] ≤ V’[j] for j = 1..N

V < V’ iff V ≤ V’ ˄ V != V’

Two events e and e’ are concurrent (e || e’) if neiher

V(e) ≤ V(e’) nor V(e) ≥ V(e’)

Question: What does Vi[j] = k mean?

13EECS 345 Distributed Systems

Northwestern University

p1

p2

p3

a m1b

c

e

g

h

m3

(1,0,0) (2,0,0)

(2,1,0)

(0,0,1)

(2,3,3)

m2

f

d

(2,2,3)

(0,0,3) (2,3,4)

Global states

Checking if a property of a distributed system is true

Examples

– Distributed garbage collection – is an object garbage? Is there

a reference to it somewhere?

– Distributed deadlock situation

– Distributed debugging

Detecting a condition like any of these is the same as

evaluating a global state predicate

Global state, mathematically any set of local states

can be put together to form it S = (s1, s2, …, sN)

– Which of those is meaningful?

14EECS 345 Distributed Systems

Northwestern University

Global states

Cut – subset of its global history

– C = hc1
1 U hc2

2 U … hcN
N

– Set of events {eci
i : I = 1 ..N} is the frontier of the cut

A cut is consistent if, for each event it contains, it also

contains all the events that happened- before it

– A consistent global state corresponds to a consistent cut

– A linearization or consistent run – an ordering of events in a

global history that is consistent with happened-before

– A state S’ is reachable from S if there is a linearization that

passes through S and then S’

15EECS 345 Distributed Systems

Northwestern University

p1

p2
m1

e1
1

m2

e0
1 e2

1

e0
2 e1

2 e2
2

e3
1

Inconsistent cut

Consistent cut

Chandy and Lamport’s snapshots

Chandy & Lamport’s algorithm

– Useful to determine the global state of a distributed system

– Records states locally to a process, gathering is extra

It assumes that

– Neither channels nor processes fail (comm. is reliable)

– Channels are unidirectional and FIFO

– Graph of processes and channels is strongly connected

– Any process many initiate a global snapshot at any time

– Processes can continue with what they were doing while the

snapshot is being taken

16EECS 345 Distributed Systems

Northwestern University

Chandy and Lamport’s algorithm idea

Basic idea – each process records its state and, for

every channel, the set of messages sent to it

Use a special message – marker – with a dual role

– Prompt receiver to save its own state

– Help determine which message to include in the channel state

Defined by two rules

– Marker receiving rule – obligates a process to save its state

and help defined the state of the channel

– Marker sending rule – obligates a process to send a marker

after having recorded their state and before sending anything

else

17EECS 345 Distributed Systems

Northwestern University

Chandy and Lamport’s algorithm

Algorithm is defined by two rules

– Marker receiving rule for process pi

• On pi’s receipt of a marker message over channel c:

if (pi has not yet recorded its state) it

records its process state now

records the state of c as the empty state

turns on recording of messages arriving over other

incoming channels

else

pi records the state of c as the set of messages it has

received over c since it saved its state

end if

– Marker sending rule for process pi

• After pi has recorded its state, for ach outgoing channel c:

pi sends one marker message over c

(before it sends any other message over c)

18EECS 345 Distributed Systems

Northwestern University

Taking a snapshot

Two processes trading in widgets at a rate of

$10 per piece

p2 has already received and order of 5 widgets

p1 records its state in S0, emits marker and

follows with another request

19EECS 345 Distributed Systems

Northwestern University

Global state S0 p1 p2

c2

c1

<$50,2000><$1000,0>

Global state S1 p1 p2

c2

c1

<$50,2000><$900,0> (order 10,$100), M

Taking a snapshot

Before p2 gets the marker it sends the 5 widgets

Then gets the marker and record its state (<$50,

1995>) and that of channel c2 as empty

Then sends a marker on c1

20EECS 345 Distributed Systems

Northwestern University

Global state S2 p1 p2

c2

c1

<$50,1995><$900,0> (order 10,$100), M

(five widgets), M

Taking a snapshot

When p1 gets the marker, it records the state of c1

Final recorded state is p1: <$1000, 0>, p2: <$50,

1995>, c1: <(five widgets)>, c2: <>

State is consistent

Note that it differs from all global states the system

went through

21EECS 345 Distributed Systems

Northwestern University

Global state S3 p1 p2

c2

c1

<$50,1995><$900,5> (order 10,$100)

Taking a snapshot

22EECS 345 Distributed Systems

Northwestern University

Global state S0 p1 p2

c2

c1

<$50,2000><$1000,0>

Global state S1 p1 p2

c2

c1

<$50,2000><$900,0> (order 10,$100), M

Global state S2 p1 p2

c2

c1

<$50,1995><$900,0> (order 10,$100), M

(five widgets)

Global state S3 p1 p2

c2

c1

<$50,1995><$900,5> (order 10,$100)

Final recorded state is p1: <$1000, 0>, p2: <$50, 1995>,

c1: <(five widgets)>, c2: <>

