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Measuring time out in the world

Time has historically been measured astronomically

A solar day

– Time between two consecutive transits of the Sun

– Transit of the Sun – when the Sun reaches its highest 

apparent point in the sky

Solar second

– 1/(24*3600) of a solar day

But the period of earth rotation is not constant!

– Slow down due to tidal friction and atmospheric drag

– ~300 million years there were about 400 days per year
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Atomic clocks

Avoid problems with astronomical-based 

measurement

Count transitions of Cesium 133 atom
– A second – time to make 9,192,631,770 transitions (same as mean 

solar second when introduced)

– TAI (International Atomic Time) the avg of several atomic clocks

Universal Coordinated Time (UTC) 
– Problem – 86,400 TAI sec is 3msec < mean solar day today

– Solution – add leap sec if TAI & solar time differ by 800 msec

UTC seconds broadcasted on WWV shortwave radio 

(error > +/-10msec)
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Physical clocks

Hardware clock based on count of oscillations in a 

crystal

Let’s call this Cp(t), the value of the clock on machine 

p when UTC is t

– Ideally Cp(t) = t for all p and all t – C’p(t) = dC/dt = 1, but

– Clocks drift (i.e. count time at different rates), so bound drift
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Clock synchronization

Two modes of synchronization

– External – synchronize with a authoritative, external source of 

time; for a synchronization bound D > 0, and for a source of 

time S, |S(t) – Ci(t)| < D for i = 1..N

– Internal – synchronize the clock among them; |Ci(t) – Cj(t)| < D 

for i,j = 1..N

Synchronization in a synchronous system

– Bounds are known for drift rates and maximum message 

transmission delays

– Process sends time to another; if variation on transmission 

delay is u = max - min(max + min)/2 then t + (max + min)/2 

gives a skew of at most u/2

– But most distributed systems are asynchronous – no bounds 

on delays!
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Clock synchronization

External - Cristian’s algorithm, ~NTP

– Every machine asks a time server for the accurate time, gets t 

in a message

– Set time to t + Tround/2, assuming equal split of transmission 

time

Internal - Berkeley

– Let a time server poll all machines periodically, calculate an 

average, and inform each host of to adjust its time

NTP service

– Provided by network of servers with primary servers 

connected to time source, secondary servers to …

– NTP servers synchronize with others via multicast, procedure 

call or symmetric mode
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Abstract model of a distributed system

A distributed system – a collection P of N processes pi

Processes communicate (only) by sending messages

Each process pi has a state si which, in general, 

transform when executes

Processes execute a series of actions – send/receive, 

or transform its state – an event is the occurrence of a 

single action

Events within a process can be place in single, total 

ordering, a relationship between events denoted by →i

History of a process – the series of events that take 

place within it
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What happened before

Without perfectly synchronized clocks, how can we 

order events in a distributed system?

– Events in a single process occur in the order the process 

observes them

– When a message is sent between two processes, the sending 

occurs before the receiving

The partial ordering that results from this – happened-

before relation 

– If e and e’ are two events in the same process, and e→ie’ (e 

comes before e’), then e→e’

– If e is the sending of a message, and e’ is the receipt of that 

message, then e→e’

– If e→e’ and e’→e’’, then e→e’’
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Lamport clocks

To maintain a global view on the system’s behavior 

that is consistent with the happened before relation

Lamport clock

– A monotonically increasing software counter

– Each process pi has its own Lamport clock Li that uses to 

timestamp its events (Li(e) is the timestamp of e)

To capture the happened-before relation

– LC1: If e and e’ are events in the same process, and e→e’, 

then Li(e) < Li(e’); i.e. Li is incremented before event

– LC2: If a processes sends a message

• It piggybacks with it the value t = Li

• On receiving a message, a process pj computes Lj := max(Lj, t) and then 

applies LC1

To create a total order we can take into account the 

processes ids (practical but without physical meaning)

9EECS 345 Distributed Systems

Northwestern University



Lamport clocks
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Problem with Lamport clocks

Observation: Lamport clocks do not guarantee that if 

L(e) < L(e’), e causally preceded e’:

– E.g. L(b) < L(f), but !(b → f)
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Vector clocks

Vector clock – an array of N integers for a system of N 

processes

Each process Pi keeps its own vector Vi; initially Vi[j] = 

0 for i,j = 1..N

Before executing an event Pi - Vi [ i ] := Vi [i ] + 1

When Pi sends a message m to Pj, 

– It executes the previous step

– It sets m’s (vector) timestamp ts (m) equal to Vi

Upon receipt of a message m

– Pj adjusts its own vector by setting Vj [k ] := max{Vj [k ], ts

(m)[k ]} for each k (it “merges” both vectors)

– It executes first step
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Comparing vector clocks

V = V’ iff V[j] = V’[j] for j = 1..N

V ≤ V’ iff V[j] ≤ V’[j] for j = 1..N

V < V’ iff V ≤ V’ ˄ V != V’

Two events e and e’ are concurrent (e || e’) if neiher

V(e) ≤ V(e’) nor V(e) ≥ V(e’) 

Question: What does Vi[j] = k mean?
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Global states

Checking if a property of a distributed system is true

Examples

– Distributed garbage collection – is an object garbage? Is there 

a reference to it somewhere?

– Distributed deadlock situation

– Distributed debugging

Detecting a condition like any of these is the same as 

evaluating a global state predicate

Global state, mathematically any set of local states 

can be put together to form it S = (s1, s2, …, sN)

– Which of those is meaningful?
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Global states

Cut – subset of its global history

– C = hc1
1 U hc2

2 U … hcN
N

– Set of events {eci
i : I = 1 ..N} is the frontier of the cut

A cut is consistent if, for each event it contains, it also 

contains all the events that happened- before it

– A consistent global state corresponds to a consistent cut

– A linearization or consistent run – an ordering of events in  a 

global history that is consistent with happened-before

– A state S’ is reachable from S if there is a linearization that 

passes through S and then S’

15EECS 345 Distributed Systems

Northwestern University

p1

p2
m1

e1
1

m2

e0
1 e2

1

e0
2 e1

2 e2
2

e3
1

Inconsistent cut

Consistent cut



Chandy and Lamport’s snapshots

Chandy & Lamport’s algorithm 

– Useful to determine the global state of a distributed system

– Records states locally to a process, gathering is extra

It assumes that

– Neither channels nor processes fail (comm. is reliable)

– Channels are unidirectional and FIFO

– Graph of processes and channels is strongly connected

– Any process many initiate a global snapshot at any time

– Processes can continue with what they were doing while the 

snapshot is being taken
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Chandy and Lamport’s algorithm idea

Basic idea – each process records its state and, for 

every channel, the set of messages sent to it

Use a special message – marker – with a dual role

– Prompt receiver to save its own state

– Help determine which message to include in the channel state

Defined by two rules

– Marker receiving rule – obligates a process to save its state 

and help defined the state of the channel 

– Marker  sending rule – obligates a process to send a marker 

after having recorded their state and before sending anything 

else
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Chandy and Lamport’s algorithm

Algorithm is defined by two rules

– Marker receiving rule for process pi

• On pi’s receipt of a marker message over channel c:

if (pi has not yet recorded its state) it 

records its process state now

records the state of c as the empty state

turns on recording of messages arriving over other 

incoming channels

else 

pi records the state of c as the set of messages it has 

received over c since it saved its state

end if

– Marker sending rule for process pi

• After pi has recorded its state, for ach outgoing channel c:

pi sends one marker message over c

(before it sends any other message over c)
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Taking a snapshot

Two processes trading in widgets at a rate of 

$10 per piece

p2 has already received and order of 5 widgets

p1 records its state in S0, emits marker and 

follows with another request 
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Taking a snapshot

Before p2 gets the marker it sends the 5 widgets

Then gets the marker and record its state (<$50, 

1995>) and that of channel c2 as empty

Then sends a marker on c1
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Taking a snapshot

When p1 gets the marker, it records the state of c1

Final recorded state is p1: <$1000, 0>, p2: <$50, 

1995>, c1: <(five widgets)>, c2: <>

State is consistent

Note that it differs from all global states the system 

went through
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Taking a snapshot
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Global state S0 p1 p2

c2
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Global state S1 p1 p2

c2

c1

<$50,2000><$900,0> (order 10,$100), M

Global state S2 p1 p2

c2

c1

<$50,1995><$900,0> (order 10,$100), M

(five widgets)

Global state S3 p1 p2

c2

c1

<$50,1995><$900,5> (order 10,$100)

Final recorded state is p1: <$1000, 0>, p2: <$50, 1995>, 

c1: <(five widgets)>, c2: <>


