MCCormick
Northwestern Engineering

MapReduce: Simplified Data
Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat
OSDI 2004

Presented by Zachary Bischof

Winter 10 EECS 345 Distributed Systems 1



MCCormick

Northwestern Engineering

Outline

* Motivation
 Summary

« Example

* Implementation
* Discussion

Winter 10 EECS 345 Distributed Systems 2



MCCormick
Northwestern Engineering

Motivation for MapReduce

» Parallel programming is hard

* Goal of MapReduce:

* Process a lot of data (terabytes) over a lot of machines
(hundreds or thousands)

« Hide details of parallelization

* Need a new programming model

Winter 10 EECS 345 Distributed Systems 3



MCCormick
Northwestern Engineering

Summary

 How does MapReduce help?
« Hides details of parallelization from programmer
* Provides some transparency
« Handles fault-tolerance
» Data distribution is automatic
* Does load balancing and scheduling

* Monitors the status of systems and overall progress of the
program

« Uses Google File System (GFS)

Winter 10 EECS 345 Distributed Systems 4



MCCormick
Northwestern Engineering

How it Works

» Restricts the programming model
* Divide work into key/value pairs
 Makes it easier to use

* Programmers write Map and Reduce functions

 MapReduce handles the rest

Winter 10 EECS 345 Distributed Systems 5



MCCormick
Northwestern Engineering

Map

« User-defined
 |nput: key/value pair
« (input key, input value)

* QOutput: List of intermediate key/value pairs
* list(output key, intermediate value)

* Analysis of a worker’s dataset produces

intermediate values
 Input and intermediate values may be from a different domain

Winter 10 EECS 345 Distributed Systems 6



MCCormick
Northwestern Engineering

Reduce

 User-defined

 |nput: intermediate key/value pairs
« (output key, list(intermediate value)

« Output: output keys and values
* list(output value)

* Merges together all intermediate values for a

particular key into a new set of values
« Output is often one value but does not have to be

Winter 10 EECS 345 Distributed Systems 7



MCCormick
Northwestern Engineering

Example: Counting words

map(String input_key, String input_value):
// 1input_key: document name

// 1input_value: document contents

for each word w in input_value:
EmitIntermediate(w, "1");

reduce(String output_key, Iterator intermediate_values):
// output_key: a word

// output_values: a list of counts

int result = 0;

for each v in intermediate_values:

each result += ParseInt(v);

Emit (AsString(result));

Winter 10 EECS 345 Distributed Systems 8



MCCormick
Northwestern Engineering

Example (cont’d)

 Document is split up for workers
« Map step:

« Each word gets an initial value of “1”
« Each word is a key with a list of values

* Reduce Step:

« Takes a key (in this case a word), and a list of values (all “17)
* Adds them up
« Passes them up the tree

Winter 10 EECS 345 Distributed Systems 9



MCCormick

Northwestern Engineering

Input

Intermediate

Winter '10

kl:vkl:vk2:wv

Grouped

Output

kl:v,v,v,v | k2:v [k3:v,v [kd:v,v,v [kS:v
v v v vy

EECS 345 Distributed Systems

10



MCCormick
Northwestern Engineering

Other Examples

» Distributed Grep
 Distributed Sort

* Machine Learning

* Reverse Web-Link Graph
 And more...

Winter 10 EECS 345 Distributed Systems 11



MCCormick
Northwestern Engineering

Implementation

» Uses a distributed file system to manage data
+ GFS (SOSP 2003)

« Bandwidth is a bottleneck

* Request data location from GFS

« Assign tasks to the same machine or one on the same switch
(localizes activity)

e Combiner Function

« Do partial merging of intermediate keys
* Reduce network traffic

Winter 10 EECS 345 Distributed Systems 12



MCCormick
Northwestern Engineering

Implementation

» Worker failure
* Detect with heartbeat
« Use backup tasks to reduce “stragglers”

« Some failures caused by inputs
* Debug and fix?
» Local Execution
« Send message to master from signal handler on seg_fault
« Master skips a record after seeing two failures

Winter 10 EECS 345 Distributed Systems 13



MCCormick

Northwestern Engineering

Sort
Normal execution 891 seconds
Without backup tasks 1283 seconds
200 tasks killed 933 seconds

Winter 10 EECS 345 Distributed Systems 14



MCCormick

Northwestern Engineering

Winter '10

20000 —
15000 —
10000 —
5000 —

Output (MB/s)

AN

T T I T L T T I
500 1000

Seconds

(a) Normal execution

EECS 345 Distributed Systems

15



MCCormick

Northwestern Engineering

20000 —
15000 —
10000 —
O ! ! ! ! I ! ) I I ) )
500 1000
Seconds
(b) No backup tasks

Winter 10 EECS 345 Distributed Systems 16



MCCormick

Northwestern Engineering

20000 —
15000 —
10000 —
5000 —
0 —+— /\« ﬁ[\M —
500 1000

Seconds

(c¢) 200 tasks killed

Winter 10 EECS 345 Distributed Systems 17



MCCormick

Northwestern Engineering

Comments/Questions?

Winter 10 EECS 345 Distributed Systems 18



MCCormick
Northwestern Engineering

Discussion
What does MapReduce provide that is novel?
« Some benefits of MapReduce are not new

Master failure (use checkpoints)

“our current implementation aborts the MapReduce computation if the master fails.”
 Is there a better way to handle master failure?
* When would checkpoints be useful?

 What are some other types of problems that we
could solve using MapReduce?

 What are some limitations of MapReduce?
 MapReduce vs. DBMS

Winter 10 EECS 345 Distributed Systems 19



