
Department of Electrical Engineering and Computer Science

MapReduce: Simplified Data
Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat
OSDI 2004

Presented by Zachary Bischof

EECS 345 Distributed Systems Winter '10 1

Department of Electrical Engineering and Computer Science

Outline
•  Motivation
•  Summary
•  Example
•  Implementation
•  Discussion

Winter '10 EECS 345 Distributed Systems 2

Department of Electrical Engineering and Computer Science

Motivation for MapReduce
•  Parallel programming is hard

•  Goal of MapReduce:
•  Process a lot of data (terabytes) over a lot of machines

(hundreds or thousands)
•  Hide details of parallelization

•  Need a new programming model

Winter '10 EECS 345 Distributed Systems 3

Department of Electrical Engineering and Computer Science

Summary
•  How does MapReduce help?

•  Hides details of parallelization from programmer
•  Provides some transparency

•  Handles fault-tolerance
•  Data distribution is automatic
•  Does load balancing and scheduling
•  Monitors the status of systems and overall progress of the

program

•  Uses Google File System (GFS)

Winter '10 EECS 345 Distributed Systems 4

Department of Electrical Engineering and Computer Science

How it Works
•  Restricts the programming model

•  Divide work into key/value pairs
•  Makes it easier to use

•  Programmers write Map and Reduce functions

•  MapReduce handles the rest

Winter '10 EECS 345 Distributed Systems 5

Department of Electrical Engineering and Computer Science

Map
•  User-defined
•  Input: key/value pair

•  (input key, input value)

•  Output: List of intermediate key/value pairs
•  list(output key, intermediate value)

•  Analysis of a worker’s dataset produces
intermediate values
•  Input and intermediate values may be from a different domain

Winter '10 EECS 345 Distributed Systems 6

Department of Electrical Engineering and Computer Science

Reduce
•  User-defined
•  Input: intermediate key/value pairs

•  (output key, list(intermediate value)

•  Output: output keys and values
•  list(output value)

•  Merges together all intermediate values for a
particular key into a new set of values
•  Output is often one value but does not have to be

Winter '10 EECS 345 Distributed Systems 7

Department of Electrical Engineering and Computer Science

Example: Counting words

Winter '10 EECS 345 Distributed Systems 8

map(String input_key, String input_value): !
// input_key: document name !
// input_value: document contents !
for each word w in input_value: !
EmitIntermediate(w, "1");

reduce(String output_key, Iterator intermediate_values): !
// output_key: a word !
// output_values: a list of counts !
int result = 0; !
for each v in intermediate_values: !
each result += ParseInt(v); !
Emit(AsString(result));

Department of Electrical Engineering and Computer Science

Example (cont’d)
•  Document is split up for workers
•  Map step:

•  Each word gets an initial value of “1”
•  Each word is a key with a list of values

•  Reduce Step:
•  Takes a key (in this case a word), and a list of values (all “1”)
•  Adds them up
•  Passes them up the tree

Winter '10 EECS 345 Distributed Systems 9

Department of Electrical Engineering and Computer Science

Winter '10 EECS 345 Distributed Systems 10

Department of Electrical Engineering and Computer Science

Other Examples
•  Distributed Grep
•  Distributed Sort
•  Machine Learning
•  Reverse Web-Link Graph
•  And more…

Winter '10 EECS 345 Distributed Systems 11

Department of Electrical Engineering and Computer Science

Implementation
•  Uses a distributed file system to manage data

•  GFS (SOSP 2003)

•  Bandwidth is a bottleneck
•  Request data location from GFS
•  Assign tasks to the same machine or one on the same switch

(localizes activity)

•  Combiner Function
•  Do partial merging of intermediate keys
•  Reduce network traffic

Winter '10 EECS 345 Distributed Systems 12

Department of Electrical Engineering and Computer Science

Implementation
•  Worker failure

•  Detect with heartbeat
•  Use backup tasks to reduce “stragglers”

•  Some failures caused by inputs
•  Debug and fix?

•  Local Execution
•  Send message to master from signal handler on seg_fault
•  Master skips a record after seeing two failures

Winter '10 EECS 345 Distributed Systems 13

Department of Electrical Engineering and Computer Science

Sort

Normal execution 891 seconds

Without backup tasks 1283 seconds

200 tasks killed 933 seconds

Winter '10 EECS 345 Distributed Systems 14

Department of Electrical Engineering and Computer Science

Winter '10 EECS 345 Distributed Systems 15

500 1000
0

5000

10000

15000

20000

In
pu

t (
M

B/
s)

500 1000
0

5000

10000

15000

20000

Sh
uf

fle
 (M

B/
s)

500 1000
Seconds

0

5000

10000

15000

20000

O
ut

pu
t (

M
B/

s)

Done

(a) Normal execution

500 1000
0

5000

10000

15000

20000

In
pu

t (
M

B/
s)

500 1000
0

5000

10000

15000

20000

Sh
uf

fle
 (M

B/
s)

500 1000
Seconds

0

5000

10000

15000

20000

O
ut

pu
t (

M
B/

s)

Done

(b) No backup tasks

500 1000
0

5000

10000

15000

20000

In
pu

t (
M

B/
s)

500 1000
0

5000

10000

15000

20000

Sh
uf

fle
 (M

B/
s)

500 1000
Seconds

0

5000

10000

15000

20000

O
ut

pu
t (

M
B/

s)

Done

(c) 200 tasks killed

Figure 3: Data transfer rates over time for different executions of the sort program

original text line as the intermediate key/value pair. We
used a built-in Identity function as the Reduce operator.
This functions passes the intermediate key/value pair un-
changed as the output key/value pair. The final sorted
output is written to a set of 2-way replicated GFS files
(i.e., 2 terabytes are written as the output of the program).
As before, the input data is split into 64MB pieces
(M = 15000). We partition the sorted output into 4000
files (R = 4000). The partitioning function uses the ini-
tial bytes of the key to segregate it into one of R pieces.
Our partitioning function for this benchmark has built-
in knowledge of the distribution of keys. In a general
sorting program, we would add a pre-pass MapReduce
operation that would collect a sample of the keys and
use the distribution of the sampled keys to compute split-
points for the final sorting pass.
Figure 3 (a) shows the progress of a normal execution
of the sort program. The top-left graph shows the rate
at which input is read. The rate peaks at about 13 GB/s
and dies off fairly quickly since all map tasks finish be-
fore 200 seconds have elapsed. Note that the input rate
is less than for grep. This is because the sort map tasks
spend about half their time and I/O bandwidth writing in-
termediate output to their local disks. The corresponding
intermediate output for grep had negligible size.
The middle-left graph shows the rate at which data
is sent over the network from the map tasks to the re-
duce tasks. This shuffling starts as soon as the first
map task completes. The first hump in the graph is for

the first batch of approximately 1700 reduce tasks (the
entire MapReduce was assigned about 1700 machines,
and each machine executes at most one reduce task at a
time). Roughly 300 seconds into the computation, some
of these first batch of reduce tasks finish and we start
shuffling data for the remaining reduce tasks. All of the
shuffling is done about 600 seconds into the computation.
The bottom-left graph shows the rate at which sorted
data is written to the final output files by the reduce tasks.
There is a delay between the end of the first shuffling pe-
riod and the start of the writing period because the ma-
chines are busy sorting the intermediate data. The writes
continue at a rate of about 2-4 GB/s for a while. All of
the writes finish about 850 seconds into the computation.
Including startup overhead, the entire computation takes
891 seconds. This is similar to the current best reported
result of 1057 seconds for the TeraSort benchmark [18].
A few things to note: the input rate is higher than the
shuffle rate and the output rate because of our locality
optimization – most data is read from a local disk and
bypasses our relatively bandwidth constrained network.
The shuffle rate is higher than the output rate because
the output phase writes two copies of the sorted data (we
make two replicas of the output for reliability and avail-
ability reasons). We write two replicas because that is
the mechanism for reliability and availability provided
by our underlying file system. Network bandwidth re-
quirements for writing data would be reduced if the un-
derlying file system used erasure coding [14] rather than
replication.

OSDI ’04: 6th Symposium on Operating Systems Design and ImplementationUSENIX Association 145

Department of Electrical Engineering and Computer Science

500 1000
0

5000

10000

15000

20000

In
pu

t (
M

B/
s)

500 1000
0

5000

10000

15000

20000

Sh
uf

fle
 (M

B/
s)

500 1000
Seconds

0

5000

10000

15000

20000

O
ut

pu
t (

M
B/

s)

Done

(a) Normal execution

500 1000
0

5000

10000

15000

20000

In
pu

t (
M

B/
s)

500 1000
0

5000

10000

15000

20000

Sh
uf

fle
 (M

B/
s)

500 1000
Seconds

0

5000

10000

15000

20000

O
ut

pu
t (

M
B/

s)

Done

(b) No backup tasks

500 1000
0

5000

10000

15000

20000

In
pu

t (
M

B/
s)

500 1000
0

5000

10000

15000

20000

Sh
uf

fle
 (M

B/
s)

500 1000
Seconds

0

5000

10000

15000

20000

O
ut

pu
t (

M
B/

s)

Done

(c) 200 tasks killed

Figure 3: Data transfer rates over time for different executions of the sort program

original text line as the intermediate key/value pair. We
used a built-in Identity function as the Reduce operator.
This functions passes the intermediate key/value pair un-
changed as the output key/value pair. The final sorted
output is written to a set of 2-way replicated GFS files
(i.e., 2 terabytes are written as the output of the program).
As before, the input data is split into 64MB pieces
(M = 15000). We partition the sorted output into 4000
files (R = 4000). The partitioning function uses the ini-
tial bytes of the key to segregate it into one of R pieces.
Our partitioning function for this benchmark has built-
in knowledge of the distribution of keys. In a general
sorting program, we would add a pre-pass MapReduce
operation that would collect a sample of the keys and
use the distribution of the sampled keys to compute split-
points for the final sorting pass.
Figure 3 (a) shows the progress of a normal execution
of the sort program. The top-left graph shows the rate
at which input is read. The rate peaks at about 13 GB/s
and dies off fairly quickly since all map tasks finish be-
fore 200 seconds have elapsed. Note that the input rate
is less than for grep. This is because the sort map tasks
spend about half their time and I/O bandwidth writing in-
termediate output to their local disks. The corresponding
intermediate output for grep had negligible size.
The middle-left graph shows the rate at which data
is sent over the network from the map tasks to the re-
duce tasks. This shuffling starts as soon as the first
map task completes. The first hump in the graph is for

the first batch of approximately 1700 reduce tasks (the
entire MapReduce was assigned about 1700 machines,
and each machine executes at most one reduce task at a
time). Roughly 300 seconds into the computation, some
of these first batch of reduce tasks finish and we start
shuffling data for the remaining reduce tasks. All of the
shuffling is done about 600 seconds into the computation.
The bottom-left graph shows the rate at which sorted
data is written to the final output files by the reduce tasks.
There is a delay between the end of the first shuffling pe-
riod and the start of the writing period because the ma-
chines are busy sorting the intermediate data. The writes
continue at a rate of about 2-4 GB/s for a while. All of
the writes finish about 850 seconds into the computation.
Including startup overhead, the entire computation takes
891 seconds. This is similar to the current best reported
result of 1057 seconds for the TeraSort benchmark [18].
A few things to note: the input rate is higher than the
shuffle rate and the output rate because of our locality
optimization – most data is read from a local disk and
bypasses our relatively bandwidth constrained network.
The shuffle rate is higher than the output rate because
the output phase writes two copies of the sorted data (we
make two replicas of the output for reliability and avail-
ability reasons). We write two replicas because that is
the mechanism for reliability and availability provided
by our underlying file system. Network bandwidth re-
quirements for writing data would be reduced if the un-
derlying file system used erasure coding [14] rather than
replication.

OSDI ’04: 6th Symposium on Operating Systems Design and ImplementationUSENIX Association 145

Winter '10 EECS 345 Distributed Systems 16

Department of Electrical Engineering and Computer Science

500 1000
0

5000

10000

15000

20000

In
pu

t (
M

B/
s)

500 1000
0

5000

10000

15000

20000

Sh
uf

fle
 (M

B/
s)

500 1000
Seconds

0

5000

10000

15000

20000

O
ut

pu
t (

M
B/

s)

Done

(a) Normal execution

500 1000
0

5000

10000

15000

20000

In
pu

t (
M

B/
s)

500 1000
0

5000

10000

15000

20000

Sh
uf

fle
 (M

B/
s)

500 1000
Seconds

0

5000

10000

15000

20000

O
ut

pu
t (

M
B/

s)

Done

(b) No backup tasks

500 1000
0

5000

10000

15000

20000

In
pu

t (
M

B/
s)

500 1000
0

5000

10000

15000

20000

Sh
uf

fle
 (M

B/
s)

500 1000
Seconds

0

5000

10000

15000

20000

O
ut

pu
t (

M
B/

s)

Done

(c) 200 tasks killed

Figure 3: Data transfer rates over time for different executions of the sort program

original text line as the intermediate key/value pair. We
used a built-in Identity function as the Reduce operator.
This functions passes the intermediate key/value pair un-
changed as the output key/value pair. The final sorted
output is written to a set of 2-way replicated GFS files
(i.e., 2 terabytes are written as the output of the program).
As before, the input data is split into 64MB pieces
(M = 15000). We partition the sorted output into 4000
files (R = 4000). The partitioning function uses the ini-
tial bytes of the key to segregate it into one of R pieces.
Our partitioning function for this benchmark has built-
in knowledge of the distribution of keys. In a general
sorting program, we would add a pre-pass MapReduce
operation that would collect a sample of the keys and
use the distribution of the sampled keys to compute split-
points for the final sorting pass.
Figure 3 (a) shows the progress of a normal execution
of the sort program. The top-left graph shows the rate
at which input is read. The rate peaks at about 13 GB/s
and dies off fairly quickly since all map tasks finish be-
fore 200 seconds have elapsed. Note that the input rate
is less than for grep. This is because the sort map tasks
spend about half their time and I/O bandwidth writing in-
termediate output to their local disks. The corresponding
intermediate output for grep had negligible size.
The middle-left graph shows the rate at which data
is sent over the network from the map tasks to the re-
duce tasks. This shuffling starts as soon as the first
map task completes. The first hump in the graph is for

the first batch of approximately 1700 reduce tasks (the
entire MapReduce was assigned about 1700 machines,
and each machine executes at most one reduce task at a
time). Roughly 300 seconds into the computation, some
of these first batch of reduce tasks finish and we start
shuffling data for the remaining reduce tasks. All of the
shuffling is done about 600 seconds into the computation.
The bottom-left graph shows the rate at which sorted
data is written to the final output files by the reduce tasks.
There is a delay between the end of the first shuffling pe-
riod and the start of the writing period because the ma-
chines are busy sorting the intermediate data. The writes
continue at a rate of about 2-4 GB/s for a while. All of
the writes finish about 850 seconds into the computation.
Including startup overhead, the entire computation takes
891 seconds. This is similar to the current best reported
result of 1057 seconds for the TeraSort benchmark [18].
A few things to note: the input rate is higher than the
shuffle rate and the output rate because of our locality
optimization – most data is read from a local disk and
bypasses our relatively bandwidth constrained network.
The shuffle rate is higher than the output rate because
the output phase writes two copies of the sorted data (we
make two replicas of the output for reliability and avail-
ability reasons). We write two replicas because that is
the mechanism for reliability and availability provided
by our underlying file system. Network bandwidth re-
quirements for writing data would be reduced if the un-
derlying file system used erasure coding [14] rather than
replication.

OSDI ’04: 6th Symposium on Operating Systems Design and ImplementationUSENIX Association 145

Winter '10 EECS 345 Distributed Systems 17

Department of Electrical Engineering and Computer Science

Comments/Questions?

Winter '10 EECS 345 Distributed Systems 18

Department of Electrical Engineering and Computer Science

Discussion
•  What does MapReduce provide that is novel?

•  Some benefits of MapReduce are not new

•  Master failure (use checkpoints)
“our current implementation aborts the MapReduce computation if the master fails.”

•  Is there a better way to handle master failure?
•  When would checkpoints be useful?

•  What are some other types of problems that we
could solve using MapReduce?

•  What are some limitations of MapReduce?
•  MapReduce vs. DBMS

Winter '10 EECS 345 Distributed Systems 19

