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Motivation for MapReduce

» Parallel programming is hard

* Goal of MapReduce:

* Process a lot of data (terabytes) over a lot of machines
(hundreds or thousands)

« Hide details of parallelization

* Need a new programming model
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Summary

 How does MapReduce help?
« Hides details of parallelization from programmer
* Provides some transparency
« Handles fault-tolerance
» Data distribution is automatic
* Does load balancing and scheduling

* Monitors the status of systems and overall progress of the
program

« Uses Google File System (GFS)
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How it Works

» Restricts the programming model
* Divide work into key/value pairs
 Makes it easier to use

* Programmers write Map and Reduce functions

 MapReduce handles the rest
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Map

« User-defined
 |nput: key/value pair
« (input key, input value)

* QOutput: List of intermediate key/value pairs
* list(output key, intermediate value)

* Analysis of a worker’s dataset produces

intermediate values
 Input and intermediate values may be from a different domain
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Reduce

 User-defined

 |nput: intermediate key/value pairs
« (output key, list(intermediate value)

« Output: output keys and values
* list(output value)

* Merges together all intermediate values for a

particular key into a new set of values
« Output is often one value but does not have to be
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Example: Counting words

map(String input_key, String input_value):
// 1input_key: document name

// 1input_value: document contents

for each word w in input_value:
EmitIntermediate(w, "1");

reduce(String output_key, Iterator intermediate_values):
// output_key: a word

// output_values: a list of counts

int result = 0;

for each v in intermediate_values:

each result += ParseInt(v);

Emit (AsString(result));
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Example (cont’d)

 Document is split up for workers
« Map step:

« Each word gets an initial value of “1”
« Each word is a key with a list of values

* Reduce Step:

« Takes a key (in this case a word), and a list of values (all “17)
* Adds them up
« Passes them up the tree
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Input

Intermediate
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Other Examples

» Distributed Grep
 Distributed Sort

* Machine Learning

* Reverse Web-Link Graph
 And more...
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Implementation

» Uses a distributed file system to manage data
+ GFS (SOSP 2003)

« Bandwidth is a bottleneck

* Request data location from GFS

« Assign tasks to the same machine or one on the same switch
(localizes activity)

e Combiner Function

« Do partial merging of intermediate keys
* Reduce network traffic

Winter 10 EECS 345 Distributed Systems 12



MCCormick
Northwestern Engineering

Implementation

» Worker failure
* Detect with heartbeat
« Use backup tasks to reduce “stragglers”

« Some failures caused by inputs
* Debug and fix?
» Local Execution
« Send message to master from signal handler on seg_fault
« Master skips a record after seeing two failures
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Sort
Normal execution 891 seconds
Without backup tasks 1283 seconds
200 tasks killed 933 seconds
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Comments/Questions?
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Discussion
What does MapReduce provide that is novel?
« Some benefits of MapReduce are not new

Master failure (use checkpoints)

“our current implementation aborts the MapReduce computation if the master fails.”
 Is there a better way to handle master failure?
* When would checkpoints be useful?

 What are some other types of problems that we
could solve using MapReduce?

 What are some limitations of MapReduce?
 MapReduce vs. DBMS
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