
LOCKSS – Lots of Copies

Preserving Peer Replicas By Rate-

Limited Sampled Voting

P. Maniatis, M. Roussopoulos, TJ Giuli,

D. Rosenthal, M. Baker, Y. Muliadi

(Stanford U.)

In Proc. of SOSP 2003

Fabián E. Bustamante, Winter 2010

Motivation

Academic publishing is moving to the web

Rental provides no guarantee of long-term access

Librarians see this as their responsibility

How to preserve access to journal and other archival

information published on the web?

– Ensuring long-term access

– Guarantying authenticity of document copies

2

Answer

LOCKSS: Lot Of Copies Keep Stuff Safe

A digital preservation system that models the physical

document system approach

Having many copies ensures the long-term survival of

the documents

Peer-to-peer opinion polls guarantee the authenticity

of the documents

3

Digital preservation systems

Must resist random failures and deliberate digital

attacks for a long time

Have unusual requirements:

– Lack of central control

– Must avoid long-term secrets like encryption keys

Can make some operations very time consuming

without sacrificing usability

Must be very cheap to build and maintain
– No high-performance hardware (RAID)

Need not to operate quickly
– Should prevent rather than expedite changes

Must properly operate for decades without central

control

4

Design principles

Cheap storage is unreliable:

– Write-once media are a least as unreliable as disks

No long-term secrets:

– Too hard to preserve; too hard to recover from leak

Use inertia:

– Prevent change, do not make it too easy

Avoid third party reputation:

– Too vulnerable to slander or subversion

(eBay problem)

Intrusion detection is intrinsic:

– Not done by extrinsic system

Assume a strong adversary:

– Attackers will be able to use very large numbers of hosts

5

Existing LOCKSS system

Makes it appear to uses that pages remain available at

their original URL even when they are gone

Libraries participate in a P2P system, running

persistent web caches that

– Collect documents by crawling journal websites

– Distribute by acting as limited proxy cache for the library’s

patrons

– Preserve by cooperating with other caches to detect and

repair damages

Caches cooperate

– Sample of peers vote on the hash of a specified part of the

contents

– Provide peers with confidence in content authenticity and

integrity

6

Why polls?

On-line journals

– Do not sign the materials they publish

– Do not provide manifest enumerating the files forming a

paper, issue or volume

Crawling is unreliable

NO completely reliable storage medium exists

– All media can be stolen or destroyed

Better to put our trust in number of replicas

7

Existing LOCKSS system

Peers vote on large archival units (AU)

– Year run of a journal

Each peer will hold a different set of Aus

– No universal library

A peer that loses a poll has a bad AU

– Call series of increasingly specific partial polls to locate damage

Once damage is located/detected, provide site having a damaged

copy with a good one if the site has participated in a previous poll

– Prevents free-loading

Peers only supply materials to peers that can prove they had the

material in the past

– Prevents theft

Inexpensive

– One PC with 3x180GB disk can preserve 210 years of largest journal

8

The new opinion poll protocol

Assumes no common-mode failure

Two classes of peers

– Malign peers – conspiring peer trying to subvert the system

– Loyal Peers is a non-malign peer

• Damaged (has bad AU)

• Healthy (has correct AU)

Overall goal – To ensure that loyal peers have a high

probability to be in a healthy state

9

A poll and its outcomes

A LOKSS peer

– Calls a poll much more frequently than any anticipated rate of

random damage

– Invites into its poll a random subset of peers

Poll outcomes

– Landslide win

• Votes overwhelmingly agree with peer’s version of AU

• Do nothing

– Landslide loss

• Votes overwhelmingly disagree with peer’s version of AU

• Repair peer’s version of AU (by updating it)

– Inconclusive poll

• Require human intervention

10

Roles and voting membership

Poll initiator
– Only beneficiary of the outcome

Poll participants
– Need not find out the result of polls

– Inner and outer circle
• Inner circle participants – Selected by the poll initiator from its

Reference List; only their votes count

– Outer circle participants – Nominated by inner circle

participants and selected by poll initiator
• Could be invited into further inner circles

11

Sybil-Attack preventions

Sybil attack: Use an unlimited number of forged
identities to subvert a system

Prevention schemes:
– Infrequent voting (Limits the rate of change in the system

– Bimodal distribution of system states (increase the chance to
trigger alarms)

– Require each peer to expend significant computing power for
each step

• Computing the hash for an AU

– Churn (to be explained later)

12

Poll initiation and poll effort proof

Initiator sends to each inner circle peer a Poll

message containing a fresh public key

Inner circle peers reply with Poll Challenge

For each Poll Challenge it has received, initiator

produces some computational effort that is provable

via a pool effort proof and sends it in a Poll Proof

message

Nominate and Vote messages follow

13

Vote verification and tabulation

Verification

– If proof of effort is incorrect, vote is invalid, peer is black listed

– If proof is correct, and hash matches, it is valid and agreeing

– If proof is correct, and hash mismatches, it is valid and

disagreeing

Tabulation

– Agreeing votes < threshold (landslide loss), the initiator needs

to repair its copy

– Agreeing votes > threshold (landslide win), the initiator

updates its reference list and schedules the next poll

– Otherwise, raise an alarm (inconclusive)

No able to get quorum (enough valid votes) for a while

– Raise an alarm (inter-poll interval)

14

After the poll

Repair

– Need to detect inconsistencies between the voting information

and the repaired AU

– If initiator cannot complete the repair process, raise the

corresponding alarm

Reference list update
– Remove all disagreeing peers and some randomly chosen

agreeing peers from the inner circle

– Resets the expiration time for the remaining peers

– Insert all outer circle peers whose votes were valid and
agreeing

– Insert randomly chosen entries from friends list up to a churn
factor

15

From the invitee’s perspective

Poll solicitation

– Decide if to participate and challenge the initiator

Poll effort verification

– Verify poll effort proof and nominate a random set of peers to

the initiator’s outer circle

Vote construction

– Vote is hash of AU and interleaved with provable

computational effort

– Vote computation is divided in rounds, each with

computational effort and the hashed portion double in size

– A subsequent challenge is dependent on the previous

challenge

Repair solicitation

– After the vote, the initiator may ask for help to repair its AU

16

Protocol objectives

Overall objectives

– Prevent an adversary from swaying an opinion poll in his favor

– Or waste loyal peers’ resources

Thus, the protocol must

– Prevent adversary from gaining a foothold in a poll’s initiator

reference list

– Make it expensive for adversary to waste another peer’s

resources

– Make it likely that the adversary ‘s attack will be detected on

time

17

Mechanisms used to get it …

Effort sizing (along inertia – large changes require

large efforts)

– Use memory-bound computations

– An initiator needs to expend more effort than the cumulative

effort it imposes on the voters (computation >> verification)

Timeliness of effort (avoiding third party reputation)

– Only proofs of recent effort can affect the system

– Need to expend resources to maintain foothold

18

Mechanisms used to get it …

Rate limiting (another application of inertia)

– Loyal peers call polls autonomously and infrequently

– The rate of progress for an attack is limited by victims, not by

attackers

Reference list churning

– Avoid depending on a fixed set of peers

• They become easy targets

– Avoid depending on entirely on random peers

• They can launch Sybil attacks

– With friends list

• Attackers can gain foothold on the outer circle list but not the

friends list

19

Mechanisms used to get it

Obfuscation of protocol state (assuming a powerful

adversary)

– Encrypt all but the first protocol message exchange

– All loyal peers invited to a poll, even those who decline to

vote, must go through the motions of the protocol

• Can’t deduce the number of loyal peers who are involved in deciding the

outcome of a poll

Alarms (intrusion detection is inherent to the system)

– Protocol raises an alarm if a poll is inconclusive, suspects

local spoofing, hasn’t been able to complete a poll for a while

– Raising an alarm is expensive to discourage a rational

adversary

20

Adversary attacks

Platform attacks

– Can take over a fraction of peers instantaneously

– Not discussed in the paper but accounted for in the evaluation

Protocol attacks – Play against the LOCKSS protocol,

some examples

– Stealth modification

• Replace good AUs with bad ones without being noticed

– Nuisance

• Raise many alarms to waste resources and dilute alarms credibility

– Attrition

• Prevent loyal peers from repairs by wasting resources elsewhere

– Theft

• Obtain published content without paying

– Free-loading

• Obtain services without supplying services in return

21

Counter-attack techniques

Adversary foothold in a reference list
– Need to wait for invitation to vote

– Need to behave well for a long time before the attack (without
raising alarms)

To deal with adaptive adversary (deciding what to do
after collecting all information
– Defend by requesting commitments on future protocol steps

• Ask random sample bits (verified) before each poll

• The repair AU must match the initial bits

Avoid hijacking
– Randomly retransmit PollChallenge msgs trying to get to the

initiator

22

Stealth modification attack strategy

Two phases

– Lurk to build a foothold in loyal peers’ reference lists

– Attack

Need to have the majority of votes

Need to have loyal peers < the alarm threshold

An adversary

– Needs to wait for an initiator to call for votes

– Needs to go through many rounds of voting without triggering

an alarm

– Needs to expend effort to maintain the foothold in the

reference list

23

Evaluation

For real

– LOCKSS program initiated by Stanford University Libraries

• Software under development since 1999

– First beta version released in 2001

– Production version released in April 2004 as Open Source

(http://www.sourceforge.com)

Simulation

– Running LOCKSS for 30 years (event-based simulation)

– 1000 peers

• To initiate the friends list (and thus the reference list)

– Clusters of 30 peers

– 29 peers in the initial friends list

» 80% from the local cluster

– 20 years of lurking, 10 years of attacking

– Two sets of simulations (attacks instructed by lurking results)

24

http://www.sourceforge.com/

Results

Low rates of false alarms in the absence of attacks

25

Can sustain up to 1/3 of

the peers subverted (with

10% churn)

Time taken by the lurking

phase to a foothold; with low

subversion levels adversary

needs nearly 20 years to get

40% foothold ratios

Conclusions

Work has shown you can use

– Massive replication

– Rate limitation

– Inherent intrusion detection

– Costly operations

to build an archival system capable of resisting

attacks by powerful adversaries over decades

26

