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Motivation

Academic publishing is moving to the web

Rental provides no guarantee of long-term access

Librarians see this as their responsibility

How to preserve access to journal and other archival 

information published on the web?

– Ensuring long-term access

– Guarantying authenticity of document copies
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Answer

LOCKSS: Lot Of Copies Keep Stuff Safe

A digital preservation system that models the physical 

document system approach

Having many copies ensures the long-term survival of 

the documents

Peer-to-peer opinion polls guarantee the authenticity 

of the documents
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Digital preservation systems

Must resist random failures and deliberate digital 

attacks for a long time

Have unusual requirements:

– Lack of central control

– Must avoid long-term secrets like encryption keys

Can make some operations very time consuming 

without sacrificing usability

Must be very cheap to build and maintain
– No high-performance hardware (RAID)

Need not to operate quickly
– Should prevent rather than expedite changes

Must properly operate for decades without central 

control
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Design principles

Cheap storage is unreliable:

– Write-once media are a least as unreliable as disks

No long-term secrets:

– Too hard to preserve; too hard to recover from leak

Use inertia:

– Prevent change, do not make it too easy

Avoid third party reputation:

– Too vulnerable to slander or subversion

(eBay problem)

Intrusion detection is intrinsic:

– Not done by extrinsic system

Assume a strong adversary:

– Attackers will be able to use very large numbers of hosts
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Existing LOCKSS system

Makes it appear to uses that pages remain available at 

their original URL even when they are gone

Libraries participate in a P2P system, running 

persistent web caches that 

– Collect documents by crawling journal websites

– Distribute by acting as limited proxy cache for the library’s 

patrons

– Preserve by cooperating with other caches to detect and 

repair damages

Caches cooperate

– Sample of peers vote on the hash of a specified part of the 

contents

– Provide peers with confidence in content authenticity and 

integrity
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Why polls?

On-line journals

– Do not sign the materials they publish

– Do not provide manifest enumerating the files forming a 

paper, issue or volume

Crawling is unreliable

NO completely reliable storage medium exists

– All media can be stolen or destroyed

Better to put our trust in number of replicas
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Existing LOCKSS system

Peers vote on large archival units (AU)

– Year run of a journal

Each peer will hold a different set of Aus

– No universal library

A peer that loses a poll has a bad AU

– Call series of increasingly specific partial polls to locate damage

Once damage is located/detected, provide site having a damaged 

copy with a good one if the site has participated in a  previous poll

– Prevents free-loading

Peers only supply materials to peers that can prove they had the 

material in the past

– Prevents theft

Inexpensive 

– One PC with 3x180GB disk can preserve 210 years of largest journal
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The new opinion poll protocol

Assumes no common-mode failure

Two classes of peers

– Malign peers – conspiring peer trying to subvert the system

– Loyal Peers is a non-malign peer

• Damaged  (has bad AU)

• Healthy (has correct AU)

Overall goal – To ensure that loyal peers have a high 

probability to be in a healthy state
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A poll and its outcomes

A LOKSS peer

– Calls a poll much more frequently than any anticipated rate of 

random damage

– Invites into its poll a random subset of peers

Poll outcomes

– Landslide win

• Votes overwhelmingly agree with peer’s version of AU

• Do nothing

– Landslide loss

• Votes overwhelmingly disagree with peer’s version of AU

• Repair peer’s version of AU (by updating it)

– Inconclusive poll

• Require human intervention
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Roles and voting membership

Poll initiator
– Only beneficiary of the outcome

Poll participants
– Need not find out the result of polls

– Inner and outer circle
• Inner circle participants – Selected by the poll initiator from its 

Reference List; only their votes count

– Outer circle participants – Nominated by inner circle 

participants and selected by poll initiator 
• Could be invited into further inner circles
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Sybil-Attack preventions

Sybil attack:  Use an unlimited number of forged 
identities to subvert a system

Prevention schemes:
– Infrequent voting (Limits the rate of change in the system

– Bimodal distribution of system states (increase the chance to 
trigger alarms)

– Require each peer to expend significant computing power for 
each step

• Computing the hash for an AU

– Churn (to be explained later)
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Poll initiation and poll effort proof

Initiator sends to each inner circle peer a Poll 

message containing a fresh public key

Inner circle peers reply with Poll Challenge

For each Poll Challenge it has received, initiator 

produces some computational effort that is provable 

via a pool effort proof and sends it in a Poll Proof 

message

Nominate and Vote messages follow
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Vote verification and tabulation

Verification

– If proof of effort is incorrect, vote is invalid, peer is black listed

– If proof is correct, and hash matches, it is valid and agreeing

– If proof is correct, and hash mismatches, it is valid and 

disagreeing

Tabulation

– Agreeing votes < threshold (landslide loss), the initiator needs 

to repair its copy

– Agreeing votes > threshold (landslide win), the initiator 

updates its reference list and schedules the next poll

– Otherwise, raise an alarm (inconclusive)

No able to get quorum (enough valid votes) for a while 

– Raise an alarm (inter-poll interval)
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After the poll

Repair

– Need to detect inconsistencies between the voting information 

and the repaired AU

– If initiator cannot complete the repair process, raise the 

corresponding alarm

Reference list update
– Remove all disagreeing peers and some randomly chosen 

agreeing peers from the inner circle

– Resets the expiration time for the remaining peers

– Insert all outer circle peers whose votes were valid and 
agreeing

– Insert randomly chosen entries from friends list up to a churn 
factor
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From the invitee’s perspective

Poll solicitation

– Decide if to participate and challenge the initiator

Poll effort verification

– Verify poll effort proof and nominate a random set of peers to 

the initiator’s outer circle

Vote construction

– Vote is hash of AU and interleaved with provable 

computational effort

– Vote computation is divided in rounds, each with 

computational effort and the hashed portion double in size

– A subsequent challenge is dependent on the previous 

challenge

Repair solicitation

– After the vote, the initiator may ask for help to repair its AU
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Protocol objectives

Overall objectives

– Prevent an adversary from swaying an opinion poll in his favor

– Or waste loyal peers’ resources

Thus, the protocol must

– Prevent adversary from gaining a foothold in a poll’s initiator 

reference list

– Make it expensive for adversary to waste another peer’s 

resources

– Make it likely that the adversary ‘s attack will be detected on 

time
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Mechanisms used to get it …

Effort sizing (along inertia – large changes require 

large efforts)

– Use memory-bound computations

– An initiator needs to expend more effort than the cumulative 

effort it imposes on the voters (computation >> verification)

Timeliness of effort (avoiding third party reputation)

– Only proofs of recent effort can affect the system

– Need to expend resources to maintain foothold
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Mechanisms used to get it …

Rate limiting (another application of inertia)

– Loyal peers call polls autonomously and infrequently

– The rate of progress for an attack is limited by victims, not by 

attackers

Reference list churning

– Avoid depending on a fixed set of peers

• They become easy targets

– Avoid depending on entirely on random peers

• They can launch Sybil attacks

– With friends list

• Attackers can gain foothold on the outer circle list but not the 

friends list
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Mechanisms used to get it

Obfuscation of protocol state (assuming a powerful 

adversary)

– Encrypt all but the first protocol message exchange

– All loyal peers invited to a poll, even those who decline to 

vote, must go through the motions of the protocol

• Can’t deduce the number of loyal peers who are involved in deciding the 

outcome of a poll

Alarms (intrusion detection is inherent to the system)

– Protocol raises an alarm if a poll is inconclusive, suspects 

local spoofing, hasn’t been able to complete a poll for a while

– Raising an alarm is expensive to discourage a rational 

adversary
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Adversary attacks

Platform attacks

– Can take over a fraction of peers instantaneously

– Not discussed in the paper but accounted for in the evaluation

Protocol attacks – Play against the LOCKSS protocol, 

some examples

– Stealth modification

• Replace good AUs with bad ones without being noticed

– Nuisance

• Raise many alarms to waste resources and dilute alarms credibility

– Attrition

• Prevent loyal peers from repairs by wasting resources elsewhere

– Theft

• Obtain published content without paying

– Free-loading

• Obtain services without supplying services in return
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Counter-attack techniques

Adversary foothold in a reference list
– Need to wait for invitation to vote

– Need to behave well for a long time before the attack (without 
raising alarms)

To deal with adaptive adversary (deciding what to do 
after collecting all information
– Defend by requesting commitments on future protocol steps

• Ask random sample bits (verified) before each poll

• The repair AU must match the initial bits

Avoid hijacking
– Randomly retransmit PollChallenge msgs trying to get to the 

initiator
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Stealth modification attack strategy

Two phases

– Lurk to build a foothold in loyal peers’ reference lists

– Attack

Need to have the majority of votes

Need to have loyal peers < the alarm threshold

An adversary

– Needs to wait for an initiator to call for votes

– Needs to go through many rounds of voting without triggering 

an alarm

– Needs to expend effort to maintain the foothold in the 

reference list
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Evaluation

For real

– LOCKSS program initiated by Stanford University Libraries

• Software under development since 1999

– First beta version released in 2001

– Production version released in April 2004 as Open Source 

(http://www.sourceforge.com)

Simulation

– Running LOCKSS for 30 years (event-based simulation)

– 1000 peers

• To initiate the friends list (and thus the reference list)

– Clusters of 30 peers

– 29 peers in the initial friends list

» 80% from the local cluster

– 20 years of lurking, 10 years of attacking

– Two sets of simulations (attacks instructed by lurking results)
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Results

Low rates of false alarms in the absence of attacks
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Can sustain up to 1/3 of 

the peers subverted (with 

10% churn)

Time taken by the lurking 

phase to a foothold; with low 

subversion levels adversary 

needs nearly 20 years to get 

40% foothold ratios



Conclusions

Work has shown you can use

– Massive replication

– Rate limitation

– Inherent intrusion detection

– Costly operations

to build an archival system capable of resisting 

attacks by powerful adversaries over decades
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