LoGicAL TIME:

Capturing Causality in
Distributed Systems

Michel Raynal
University of Rennes

Mukesh Singhal
Ohio State University

Causality—determining which
event happens before what
others—is vital in

distributed computations.
Distributed systems can
determine causality using
logical clocks.

0018-9162/96/$5.00 © 1996 IEEE

erate and compete to achieve a common goal. These processes

do not share a common global memory and communicate solely
by passing messages over a communication network. The communication
delay is finite but unpredictable. A process’s actions are modeled as three
types of events: internal, message send, and message receive. An internal
event affects only the process at which it occurs, and the events at a process
are linearly ordered by their order of occurrence. Send and receive events
signify the flow of information between processes and establish causal
dependency from the sender process to the receiver process. Consequently,
the execution of a distributed application results in a set of distributed
events produced by the process. The causal precedence relation induces a
partial order on the events of a distributed computation.

Causality among events, more formally the causal precedence relation,
is a powerful concept for reasoning, analyzing, and drawing inferences
about a distributed computation. The knowledege of the causal prece-
dence relation between processes helps programmers, designers, and the
system itself solve a variety of problems in distributed computing. In dis-
tributed algorithms design, such knowledge helps ensure liveness and
fairness in mutual exclusion algorithms, maintains consistency in repli-
cated databases, and helps design deadlock-detection algorithms that
avoid phantom and undetected deadlocks. It also helps construct a con-
sistent state for resuming reexecution in distributed debugging, build a
checkpoint in failure recovery, and detect file inconsistencies in replicated
databases. Such knowledge lets a process measure the progress of other
processes, which is useful when discarding obsolete information, collect-
ing garbage, and detecting termination. Finally, knowing the number of
causally dependent events helps measure the amount of concurrency in
a computation, since all events not causally related can be executed con-
currently.

Human beings use the concept of causality to plan, schedule, and exe-
cute an enterprise, or to determine a plan’s feasibility. In daily life, we use
global time to deduce causality from loosely synchronized clocks such as
wrist watches and wall clocks. But in distributed computing systems, the
rate of event occurrence is several magnitudes higher, and the event-exe-
cution time several magnitudes smaller. If the physical clocks in these sys-
tems are not synchronized precisely, the causality relation between events
cannot be captured accurately. The notion of time is basic to capturing the
causality between events. However, distributed systems have no built-in
physical time and can only approximate it. Even the Internet’s Network
Time Protocols,! which maintain a time accurate to a few tens of mil-
liseconds, are not adequate for capturing causality in distributed systems.
However, in a distributed computation, both the progress and the inter-
action between processes occurs in spurts. Consequently, we can use log-
ical clocks to accurately capture the causality relation between events.

This article presents a general framework of a system of logical clocks
in distributed systems and discusses three methods—scalar, vector, and

A distributed computation consists of a set of processes that coop-

February 1996

P

P2

P3

Figure 1. The time diagram of a distributed
execution.

.matrix—for implementing logical time in these systems.
In these methods, time is represented by non-negative
integers, a vector of non-negative integers, and a matrix
of non-negative integers, respectively.

A NIODEL OF DISTRIBUTED
EXECUTIONS

A distributed program is composed of a set of n asyn-
chronous processes py, Py, . - -, Py, - - - » P that communicate
by message-passing over a communication network. The
processes do not share global memory and communicate
solely by passing messages. The communication delay is
finite and unpredictable. Also, these processes do not share
a global clock that they can access instantaneously. Process
execution and message transfer are asynchronous. A
process can execute an event spontaneously; when send-
ing a message, it does not have to wait for the delivery to
be complete.

Distributed executions
The execution of process p; produces a sequence of
events

denoted by 4, where
H=(h, =)

The set of events produced by p; is h;. The binary relation
—, defines a total order on these events and expresses
causal dependencies among the events of p;.

We define the relation —,, as follows: For every mes-
sage m exchanged between two processes, we have

send (m) —,, receive(m)

The relation —,,,; defines causal dependencies between
the pairs of corresponding send and receive events.

The distributed execution of a set of processes is a partial
order H=(H, —), where H=U, h;and — = (U; —;U —émsg)
The relation — expresses causal dependencies among the
events in the distributed execution of a set of processes. If
e, — e,, e, is directly or transitively dependent on e,. If
e, e, and e, e, , events e; and e, are concurrent,
denoted ase, | | e,. Clearly, for any two events e, and e, in
adistributed execution, e; — e,, e, > e, 0re, || e,.

Figure 1 shows the time diagram of a distributed exe-
cution involving three processes. A horizontal line repre-
sents the progress of the process, a dot indicates an event,

Computer

and a slanted arrow indicates a message transfer. In this
execution,a —b,b—d,andb || c.

Relevant events

Generally, few events are relevant at an observation or
application level. For example, in a checkpointing proto-
col, onlylocal checkpoint events are relevant. Let R denote
the set of relevant events. Let — be the restriction of — to
the events in R. That s,

Ve,e,€ Rie,—pe, e —e,

An observation level defines a projection of the events in
the distributed computation. The distributed computation
defined by the observation level R is denoted as R= (R, —).
For example, if in Figure 1, only events a, b, ¢, and d are rel-’
evant to an observation level (R={a, b, ¢, d}), then —; is
defined as follows: —z={(a,), (a,c), (a,d), (b, d), (¢, D)}.

LOGICAL CLOCKS: A MECHANISM TO
CAPTURE CAUSALITY

In a system of logical clocks, every process has a 10g1ca1
clock that is advanced using a set of rules. Every event is
assigned a timestamp, by which a process can infer the
causality relation between events. The' timestamps
assigned to events obey the fundamental monotonicity
property. That is, if an event a causally affects an event b,
the timestamp of a is smaller than the timestamp.of b.

A system of logical clocks consists of a time domain T
and a logical clock C. Elements of T form a partially
ordered set over a relation <. This relation is usually cailed
“happened before” or causal precedence. Intuitively, this
relation is analogous to the “earlier than” relation pro-
vided by physical time. The logical clock C is a function
that maps an evente in a distributed system to an element,
denoted as C(e) and called the timestamp of e, in the time
domain T. The clock is defined as :

C:H—T

to satisfy the following property:
e, —>e, = Cle;) <Cley)

This monotonicity property is called the clock consistency
condition. When T and C satisfy the following condition,

e, — e, = Cle) <Cley)
the system of clocks is said to be strongly consistent.

Implementing logical clocks

Implementing logical clocks requires addressing two
issues: determining data structures local to every process
to represent logical time and designing a protocol (set of
rules) to update the data structures to ensure the consis-
tency condition.

Each process p; maintains data structures that give it the
following two capabilities: :

e Alocallogical clock, denoted by Ic, that helps p; mea-
sure its own progress; and

o Agloballogical clock, denoted by g, that represents
p;’s local view of the global logical time. It allows the
process to assign consistent timestamps to its local
events. Typically, Ic; is a part of gc;.

The protocol ensures that a process’s logical clock, and
thus its view of the global time, is managed consistently.
The protocol consists of the following two rules:

o R1. This governs how a process updates the local log-
ical clock (to capture its progress) when it executes
an event, whether send, receive, or internal.

o R2.This governs how a process updates its global log-
ical clock to update its view of the global time and
global progress. It dictates what information about
the logical time a process piggybacks in a message
and how the receiving process uses this information
to update its view of the global time.

Systems of logical clocks differ in their representation
of logical time and in the protocol for updating logical
clocks. However, all logical clock systems implement some
form of R1 and R2 and consequently ensure the funda-
mental monotonicity property associated with causality.
Moreover, each logical clock system provides users with
additional properties, as we discuss.

SCALAR TIME

Lamport proposed the scalar time representation in
19782 for totally ordering events in a distributed system. In
this representation, the time domain is the set of non-neg-
ative integers. The logical local clock of a process p; and
its local view of the global time are squashed into one inte-
ger variable, C,.

Rules R1 and R2 update the clocks as follows.

* R1.Before executing an event (send, receive, or inter-
nal), p, executes the following:
C=C+d (d>0)
In general, every time R1 is executed, d can have a differ-
ent value, which can be application-dependent. However,
d is typically kept at 1, since this allows a process to iden-
tify the time of each event uniquely at a process while min-
imizing d’s rate of increase.

* R2. Each message piggybacks the clock value of its
sender at sending time. When p, receives a message
with the timestamp C,,,, it executes the following
actions:

msg>

1. C;:=max(C,, Cp)
2.Execute R1.
3. Deliver the message.

Figure 2 shows the evolution of scalar time, using d =1 for
the computation from Figure 1.

Basic properties
Clearly, scalar clocks satisfy monotonicity, and hence
the consistency property. In addition, a distributed system

Figure 2. Evolution of scalar time in distributed
execution.

can use scalar clocks to totally order events.? The main
problem in totally ordering the events is that two or more
events at different processes can have the identical time-
stamp. For example, in Figure 2, the third event of process
P, and the second one of process p, receive the same scalar
timestamp. We require a tie-breaking mechanism to order
such events. Typically, process identifiers are linearly
ordered, and a tie among events with the identical scalar
timestamp is broken on the basis of their process identi-
fiers. The timestamp of an event is denoted by a tuple (t,
i), where t is its time of occurrence and i is the process at
which it occurred. The total order relation < on two
events x and y with timestamps (h, i) and (k, j), respec-
tively, is

x<y@(h<kor(h=kandi<j))

Since events that occur at the same logical scalar time
are independent (that is, not causally related), the system
can order them using any criterion without violating the
causality relation —. Therefore, a total order is consistent
with the causality relation —. A total order is generally
used to ensure liveness properties in distributed algo-
rithms (requests are timestamped and served according
to the total order on these timestamps).2

When the increment value d is always 1, scalar time has
an interesting property. If event e has a timestamp h, then
h - 1 represents the minimum logical duration, counted
in events, required before producing e.® We call this the
height of e. In other words, we know that h — 1 events have
been produced sequentially before e regardless of the
processes that produced these events. For example, in
Figure 2, five events precede event b on the longest causal
path ending atb.

However, the system of scalar clocks is not strongly con-
sistent. That is, for two events e, and e,,

C(e]) <C(e2) He —e,

For example, in Figure 2, the third event of process p, has
a smaller scalar timestamp than the third event of p,.
However, the former did not happen before the latter.
Scalar clocks are not strongly consistent because the local
logical clock and global logical clock are squashed into
one, losing the causal dependency information among
events at different processes. In Figure 2, when p, receives
the first message from p,, it updates its clock to 3, forget-
ting that the timestamp of the latest event at p,, on which
it depends, is 2.

February 1996

1 12 3 4 5
o |0 0 3 I3
0l 10 0 4 4

2
3
2

Figure 3. Evolution of vector time in distributed sys-
tems. :

2
3
4

VECTOR TIME

Fidge,® Mattern,* and Schmuck® each developed a sys-
tem of vector clocks independently (see “Vector clocks: A
historical perspective” sidebar). In the system of vector
clocks, the time domain is represented by a set of n-dimen-
sional, non-negative integer vectors. Each process p; main-
tains a vector vt;[1 .. n], where vt;[i] is the local logical
clock of p; and describes the logical time progress at p,.
vt;[jl represents p;’s latest knowledge of p/’s local time. If
vi[j1=x, p; knows that the local time at p; has progressed

torical perspective

ed‘yfyith vector, clocks was first

nconsistencies of repli-
sning. Liskov.and Ladin?.
ine highly available dis-

d a similar system of
tween eventsin their
hemto prevent drift

Computer

up tox. The entire vector vt; constitutes p;’s view of the log-
ical global time; p; uses it to timestamp events.

The process p; uses the following R1 and R2 to update
its clock. :

* R1.Before executingan event, p; updates tslocal log-
ical time as follows: '
veli] =vlil+d (d>0)

* R2. Each sender process piggybacks a message m
with its vector clock value at sending time. Upon

receiving such a message (m, vt), p; executes the fol-
lowing sequence of actions:

1. Update its logical global time as follows:
1<k <n vt[k] :=max(vt,[k], vt[k])

2.Execute R1.
3. Deliver the message m.

An event’s timestamp is the value of its process’s vector
clock at the time the event is executed. Figure 3 shows an
example of a vector clock’s progression with the increment
valued=1.

Basic properties

IsomorPHISM. The following three relations compare
two vector timestamps, vh and vk:

vh<vk & Vx:vh[x]<vk[x])
vh<vk & vh<vkand3x:vhx]<vk[x]
vh||vk < not(vh<vk) and not (vk <vh)

Recall that relation — induces a partial order on the set ~
of events produced by a distributed execution. Time-
stamping events in a distributed system using a system of
vector clocks creates the following property. If two events
x andy have timestamps vh and vk, respectively, then:

x—y & vh<vk
x||ly & vh||vk

An isomorphism thus exists between the set of partially
ordered events produced by a distributed computation
and their timestamps. This is a powerful, useful, and inter-
esting property of vector clocks. If we know the process at
which an event occurred, we can simplify the test to com-
pare two timestamps as follows: If events x and y occurred
respectively at processes p; and p; and are assigned time-
stamps (vh, i) and (vk, j) respectively, :

x—=Yy < vhlil<vkl[i]
x|y < vh[il>vklil and vh[j] <vk[j]

STRONG CONSISTENCY. The system of vector clocks is
strongly consistent. We can thus determine whethertwo
events are causally related by comparing their vector time-

- stamps. However, the dimension of vector clocks cannot be

less than n for this property to apply.s

EVENT COUNTING. If d is always 1 in the rule R1, the ith
component of vector clock at p,, vt;[il, denotes the num-
ber of events that have occurred at p; until that instant. So
if an event e has the timestamp vh, vh[j] denotes the num-
ber of events executed by p; that causally precede e. Clearly,
2 vh[j]1 — 1 represents the total number of events that
causally precede e in the distributed computation.

APPLICATIONS. Since vector time tracks causal depen-
dencies exactly, it finds a wide variety of applications. For
example, it is used in distributed debugging, implement-
ing causal ordering communication and causal distributed
shared memory, establishing global breakpoints, and
implementing the consistency of checkpoints in optimistic
recovery.

MATRIX TIME

Michael and Fischer informally proposed a system of
matrix clocks in 1982.7 Both Wuu and Bernsteiné and
Lynch and Sarin® employed the system to discard obsolete
information in replicated databases. In a system of matrix
clocks, time is represented by a set of n x n matrices of non-
negative integers. A process p; maintains a matrix m¢;[1 ..
n,1..n], where

o mt;][i,i] denotes the local logical clock of p; and tracks
the progress of the computation at p;;

o mt,[i,j] denotes the latest knowledge that p, has about
the local logical clock, mt[j, j1, of p; (note that row

- mtli, .] is nothing but the vector clock vt,[.] and
exhibits all the properties of vector clocks); and

o mt;[j, k] represents what p; knows about the latest
knowledge that p; has about the local logical clock,
mt, [k, k], of p,.

The entire matrix mt; denotes p;s local view of the logical
global time. The matrix timestamp of an event is the value
of the matrix clock of the process when the event is executed.

Process p; uses the following rules R1 and R2 to update
its clock. According to R1, before executing an event, p;
updates its local logical time as follows:

mtfi, i :=mgli,i1+d (d>0)

Under R2, each message m is piggybacked with the
matrix time mt. When p; receives such a message (m, mt)
from p;, p; executes the following sequence of actions:

1. Update its logical global time as follows:

1<k <n:mt[i, k] := max(mt[i, k], mt[j, k])
1<k, 1<n: mt[k, 1] :=max(mt[k, l1, mt[k,1])

2. Execute R1.
3. Deliver message m.

Figure 4 shows how matrix clocks progress in a distrib-
uted computation. We assume d = 1, so every event at a
process gets a locally unique sequence number. Let us con-
sider the following events: e, which is the x;th event at
process p;; e and e?, which are the xjth and x}th event at
process p,; and e} and e, which are the xith and x?th events

Figure 4. Evolution of matrix time in distributed
systems.

at p;. Let mt, denote the matrix timestamp associated with
e. Due to message m,, e} is the last event of p, that causally
precedes e, therefore, mt,[i,k]=mt,[k,k]=x3. Likewise,
mt,[i,jl=mt,[},j1=x2. The last event of p, known by p;, as
far as p;, knew when it executed e, is el; therefore,
mt,[j,k]=x}. Likewise, we have mt, [k,j]1=x}.

Basic properties
Clearly, the vector mt;[i, .] contains all the properties of
vector clocks. In addition, matrix clocks have the follow-

ing property:

min (mti [k,l]) >t=> process p;, knows that every other
k process p, knows the p/s local time
has progressed until t

If this is true, p, knows that all other processes know that
p, will never send information with a local time < t.In
many applications, this implies that processes will no
longer require certain information from p, and can use this
fact to discard obsolete information.

If d is always 1 in the rule R1, then mt[k, [] denotes the
number of events occurred at p,and known by p,, as far as
p; knows.

EFFICIENT IMPLEMENTATIONS

When there are a large number of processes in a dis-
tributed computation, the vector and matrix clocks must
piggyback huge amounts of information in messages to
disseminate time progress and update the clocks. In this
section, we discuss efficient ways to maintain vector
clocks; we could use similar techniques to efficiently
implement matrix clocks.

If vector clocks must satisfy the strong consistency prop-
erty, vector timestamps must be at least of size n.®
Therefore, in general, the size of a vector timestamp equals
the number of processes involved in a distributed compu-
tation. However, several optimizations are possible.

Singhal-Kshemkalyani’s differential technique

Singhal and Kshemkalyani’s technique® is based on an
observation that between successive events at a process,
only a few entries of the vector clock are likely to change.
This is more likely when the number of processes is large,
since only a few of them will interact frequently by pass-
ing messages. In Singhal-Kshemkalyani’s differential tech-
nique, when a process p; sends a message to a process p;,
p; piggybacks only those entries of its vector clock that
have changed since the last message it sent to p;. Therefore,

February 1996

PG T 1 1
0 1 2 3 4
0 0 1 2 4
0 0 0 0 1
P2 d f >
0
0
1 GAY,
0 4,1}

-
Pa hd -

0 0 of[o
0 0 o{|0
1 {1 2 {2} 3|l {4}
0 0 111
A - hd Ll
P3 0 /
0
0 {1}
1
Pq e >

Figure 5. The Singhal-Kshemkalyani technique for
vector clocks.

this technique cuts down the communication bandwidth
and buffer requirements (to store messages). However, a
process needs to maintain two additional vectors to store
the information regarding the clock values at the time of
the last interaction with other processes.

Figure 5 illustrates the Singhal-Kshemkalyani tech-
nique. If entries iy, i, - . . , iy of p;’s vector clock have
changed (tov,,v,, . .. , Vy, respectively) since the last mes-
sage top;, p; piggybacks a compressed timestamp {(i,, v,),
(iy, Vo), - . ., (i, Var)} in its next message to p;. When p;
receives this message, it updates its clock as follows: vt; [k}
=max(vlkl,v) fork=1,2,...,nl This technique can
substantially reduce the cost of maintaining vector clocks
in large systems if process interaction exhibits temporal
or spatial localities. However, it requires that communi-
cation channels be first-in, first-out.

Fowler-Zwaenepoel's direct-dependency
technique '

Fowler-Zwaenepoel’s direct-dependency technique™
does not maintain vector clocks on the fly. Instead, a
process maintains information regarding only direct
dependencies on other processes. It constructs a vector
time for an event, representing transitive dependencies
on other processes, off-line from a recursive search of the
direct-dependency information at processes. A process p;
majntains a dependency vector D, that is initially D,[j]1 =0
forj=1..n.p;updates it as follows:

o When an event occurs at p, D,[i] :=D;[i] + 1.

¢ ‘When p; sends a message m to p;, p; piggybacks the
updated value of D[] in the message.

e When p, receives a message from p; with the piggy-
backed value d, p; updates its dependency vector as
follows: D;[j1 :==max{D,[j1, d}.

The dependency vector at a process thus reflects only
direct dependencies. At any instant, D,[j] denotes the
sequence number of the latest event on p; that affects the
current state directly. Note that this event may precede the
latest event at p; that affects the current state causally.
Figure 6 illustrates the Fowler-Zwaenepoel technique.
The technique provides considerable cost savings, since

 only one scalar is piggybacked on every message.

Computer

Figure 6. The Fowler-Zwaenepoel technique for vec-
tor clocks.

However, the dependency vector does not represent tran-
sitive dependencies (that is, vector timestamps). Instead,
the technique obtains the transitive dependency.of an
event by recursively tracing the direct-dependency vec-
tors of processes. This will obviously create overhead and
latencies, making the technique unsuitable for applica-
tions that require on-the-fly computation of vector time-
stamps. Nonetheless, it is ideal for applications that
compute causal dependencies off line, such as causal
breakpoint and asynchronous checkpointing recovery.

Jard-Jourdan’s adaptive technique

The Fowler-Zwaenepoel technique requires a process to
observe an event—that is, update and record its depen-
dency vector—after receiving a message and before send-
ing out any. Otherwise, reconstructing a vector timestamp
from the direct-dependency vectors will not capture all
causal dependencies. When events are highly frequent, this
technique requires recording the history of a large number
of events. The Jard-Jourdantechnique™ lets processes adap-
tively observe events while maintaining the ability to
retrieve all the causal dependencies of such events.

Jard and Jourdan defined the pseudodirect relation <<
on the events of a distributed computation as follows. If
events ¢; and e; occur at processes p; and p;, respectively,
then e;<<e;if and only if a path of message transfers exists
which starts after ¢;on p;and ends before e,on p,, such that’
no observed event exists on the path.

The partial vector clock p_vt; at p; isa list of tuples of the
form (j, v), indicating that the current state of p; is pseu-
dodependent on the event at p; whose sequence number
isv. Initially, at a process p,, p_vt;={({, 0)}.

Whenever an event is observed at p,, the following
actions are executed, (letp_vt;={({1,v1),..., (i,»), L}
denote the current partial vector clock at p; and variable
e_vt; holds the timestamp of the observed event): ‘

o ¢ ve={(G1,vD),...,(Gv),...}

o p vt={0,v+1)}

When p; sends a message to p,, it piggybacks the current
value of p_vt; in the message. When p, receives a message
piggybacked with the timestamp p_vt, p; sets p_vt; to the
union of the following (let p_vt={(1, Vis)s - < » Ut Vi)

and p_vt;={(,,v}), ..., (i, v)}): v.pt, = {(1,0} v.pt; = {(1,1}
o all (i,,, vy such that (i,,, .) does not P
appear inv_pt,, {0 v.pt,=
e all (i, v,) such that (i,, .) does not v_pt,={(2,0)} {(1,0),(2,0%
appear inv_pt, and P> >
o all (i, max(v,, v,,)) for all (v,, .) that
appearinv_ptandv_pt,. {(1,0).(,00 vopts={(1,0),, o = pti= v.pty=

v.pty={(3,0))

pt;
vpts= 16,1} OB (5,)) 2 (GG (B3]

Figure 7 illustrates the Jard-Jourdan P3
technique for maintaining vector clocks.
eX_pt, denotes the timestamp of the Xth
observed event at p,. For example, the third

v.pt,=

eZ_pt3—{(1,O), e3. E—T
{2,0,3,1} {3.2),(8,1}
v.pt,= v.pt,=
140,61 (@) @

eI—Pts ={(3,0)}

{(4,0}

event observed at p; is timestamped e3_pt, Pa
={(3, 2), (4, 1)}. This timestamp means
that the pseudodirect predecessors of this
event are respectively the second event
observed at p; and the first observed at p,.

v.pts={5,0} _

I_pt,={(4,0),(5,1
el.pty={(4,0),(5)} €@

{5,
v_pts = {(5,2)}

5
So, given the timestamp of an event, we can

easily compute the set of observed events

v.pts= e2.pt;=
{4,1,5.1)} {(4,1).5,1)}

v.pts={(5,1)
el_pt; = {(5,0)

that are its predecessors.

Figure 7. The Jard-Jourdan technique for vector clocks.

THE CONCEPT OF CAUSALITY AMONG

EVENTS is fundamental to the design

and analysis of distributed programs. The notion of time is
basic to capturing causality between events; however, dis-
tributed systems can only realize an approximation of time.
Because a distributed computation typically progresses in
spurts, logical time, which advances in jumps, can capture
the monotonicity property induced by causality in the sys-

tem. Causality among events in a distributed system is a
powerful concept in reasoning, analyzing, and drawing
inferences about a computation. Another notion of global
time that preexists in the semantics of distributed programs
and participates in the execution of such programs is called
virtual time (see the “Virtual time” sidebar).

Virtual time

Awerbuch’s synchronizer concept' allows a synchronous
distributed algorithm or program to run on‘an‘asynchro-
nous distributed system. A synchronous distributed program
executes in.a lock-step manner; its progress.relies on a

--global time assumption. In the semantics of synchronous

,pates in the executlon of such programs A

distributed programs, a global tlme preexlsts and partlcf

-ensure these properties. Ricart-Agrawala’s mutual exclu-

sion‘algorithme uses Lamport’s logical clocks to ensure live-
ness; this time belongs neither to the-mutual ‘exclusion
semantics nor the program invoking mutual exclusion: In

fact, ‘other ‘means.can ensure properties such as liveness.

For xample Chandy and Misra's mutual exclusion algo-i :

February 1996

We have presented a general framework of logical clocks
in distributed systems and have discussed three systems of
logical clocks: scalar, vector, and matrix. These systems
have been used to solve a variety of problems in distributed
algorithm design, debugging distributed programs, check-
pointing and failure recovery, data consistency in repli-
cated databases, discarding obsolete information, garbage
collection, and termination detection.

In scalar clocks, the clock at a process is represented by
an integer. The message and computation overheads are
small, but the power of scalar clocks is limited—they are
not strongly consistent. In vector clocks, the clock at a
process is represented by a vector of integers. Thus, the
message and computation overheads are likely to be high;
however, vector clocks possess a powerful property—the
isomorphism that exists between the set of partially
ordered events in a distributed computation and their vec-
tor timestamps. This useful, interesting property of vector
clocks finds applications in several problem domains. In
matrix clocks, the clock at a process is represented by a
matrix of integers. Thus, the message and computation
overheads are high; however, matrix clocks are quite pow-
erful. Besides containing information about the direct
dependencies, a matrix clock contains information about
the latest direct dependencies of those dependencies, This
information can be useful in applications such as distrib-
- uted garbage collection. Thus, the power of systems of
clocks increases in the order of scalar, vector, and matrix,
but so do the complexity-and overheads.

We discussed three efficient implementations of vector
clocks; similar techniques can be used to efficiently imple-
ment matrix clocks. [

Acknowledgments
We are deeply grateful to the four anonymous referees
for their comments on a previous version of this article.

References

1. D.L. Mills, “On the Accuracy and Stability of Clocks Synchro-

" nized by Network Time Protocolin the Internet System,” ACM
Compﬁter Comm. Rev., Vol. 20, No. 1, Jan. 1990, pp. 65-75.

2. L. Lamport, “Time, Clocks, and the Ordering of Events in a
Distributed System,” Comm. ACM, Vol. 21, No. 7, July 1978,
pp. 558-564.

3. C.Fidge, “Logical Time in Distributed Computing Systems,”
Computer, Vol. 24, No. 8, Aug. 1991, pp. 28-33.

4. F. Mattern, “Virtual Time and Global States of Distributed
Systems,” Proc. Parallel and Distributed Algorithms Conf.,
North-Holland, Amsterdam, 1988, pp. 215-226.

5. F. Schmuck, The Use of Efficient Broadcast in Asynchronous
Distributed Systemns, doctoral dissertation, Tech. Report TR88-
928, Dept. Computer Science, Cornell Univ., Ithaca, New
York, 1988, 124 pp.

6. B. Charron-Bost, “Concerning the Size of Logical Clocks in
Distributed Systems,” Information Processing Letters, Vol. 39,
July 1991, pp. 11-16.

7. M.J. Fischer and A. Michael, “Sacrificing Serializability to
Attain High Availability of Data in an Unreliable Network,”
Proc. ACM Symp. Principles Database Systems, ACM Press, New
York, 1982, pp. 70-75.

Computer

8. G.T.J. Wuu and A.J. Bernstein, “Efficient Solutions to the
Replicated Log and Dictionary Problems,” Proc. 3rd ACM
Symp. Principles Distributed Computing, (PODC), ACM Press,
New York, 1984, pp. 233-242.

9. S.K. Sarin and L. Lynch, “Discarding Obsolete Information in
a Replicated Data Base System,” IEEE Trans. Software Fng.,
Vol. SE, No. 13.1, Jan. 1987, pp. 39-46.

10. M. Singhal and A. Kshemkalyani, “An Efficient Implementa-
tion of Vector Clocks,” Information Processing Letters, Vol. 43,
Aug. 1992, pp. 47-52. .

11. J. Fowler and W. Zwaenepoel, “Causal Distributed Break-
points,” Proc. 10th Int’l Conf. Distributed Computing Systems,
1990, pp. 134-141. ' '

12. C.Jard and G-C. Jourdan, “Dependency Tracking and Filter-
ing in Distributed Computations,” in Brief Announcements
ACM Symp. Principles Distributed Computing, ACM Press, New
York, 1994; also Tech. Report No. 851, IRISA, Beaulieu,
France, 1994. ‘ .

Mrichel Raynal is a professor of computer science at the
University of Rennes, France. His research interests are dis-
tributed algorithms, operating systems, protocols and par-
allelism. He received the Doctorat d Etat en informatique in
1981 from Rennes University. He has written seven books
devoted to distributed computing systems, including Dis-
tributed Computations and Networks (MIT Press, 1988) and
Synchronization and Control of Distributed Programs
(Wiley & Sons, 1990). He chaired the 9th International
Workshop on Distributed Algorithms (WDAG9) in France.
Heis currently involved in European Esprit projects devoted
to the design of fault-tolerant distributed systems.

Mukesh Singhalis an associate professor of computer and
information science at Ohio State University, Columbus. His
currentresearch interests include distributed systems, oper-
ating systems, mobile computing, and performance model-
ing. Hereceived a B.Eng. in electronics and communication
engineering from the University of Roorkee, Roorkee, India,
in 1980 and a PhD in computer science from the University
of Maryland, College Park, in 1986. He coauthored
Advanced Concepts in Operating Systems (McGraw-Hill,
1994). He is an editor of the IEEE Computer Society Press.

Readers can contact Raynal at IRISA, Campus de Beaulieu,
35042 Rennes-Cédex, France, e-mail raynal@irisa.fr. Sing-
hal can be reached at the Dept. of Computer and Informa-
tion Science, Ohio State University, Columbus, OH 43210,
e-mail singhal@cis.ohio-state.edu.

Doris Carver, Computer’s Software Technologies area editor,
coordinated the review of this article and recommended it for
publication. Her e-mail address is carver@bit.csc.Isu.edu.

mailto:carver@bit.csc.lsu.edu

