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m 
Causality-determining which 

event happens before what 

others-is vital in 

distributed computations. 

Distributed systems can 

determine causality using 

logical clocks. 

distributed computation consists of a set of processes that coop- 
erate and compete to achieve a common goal. These processes 
do not share a common global memory and communicate solely 

by passing messages over a communication network. The communication 
delay is finite but unpredictable. A process’s actions are modeled as three 
types of events: internal, message send, and message receive. An internal 
event affects only the process at which it occurs, and the events at a process 
are linearly ordered by their order of occurrence. Send and receive events 
signify the flow of information between processes and establish causal 
dependency from the sender process to the receiver process. Consequently, 
the execution of a distributed application results in a set of distributed 
events produced by the process. The causal precedence relation induces a 
partial order on the events of a distributed computation. 

Causality among events, more formally the causal precedence relation, 
is a powerful concept for reasoning, analyzing, and drawing inferences 
about a distributed computation. The knowledege of the causal prece- 
dence relation between processes helps programmers, designers, and the 
system itself solve a variety of problems in distributed computing. In dis- 
tributed algorithms design, such knowledge helps ensure liveness and 
fairness in mutual exclusion algorithms, maintains consistency in repli- 
cated databases, and helps design deadlock-detection algorithms that 
avoid phantom and undetected deadlocks. It also helps construct a con- 
sistent state for resuming reexecution in distributed debugging, build a 
checkpoint in failure recovery, and detect file inconsistencies in replicated 
databases. Such knowledge lets a process measure the progress of other 
processes, which is useful when discarding obsolete information, collect- 
ing garbage, and detecting termination. Finally, knowing the number of 
causally dependent events helps measure the amount of concurrency in 
a computation, since all events not causally related can be executed con- 
currently. 

Human beings use the concept of causality to plan, schedule, and exe- 
cute an enterprise, or to determine a plan’s feasibility. In daily life, we use 
global time to deduce causality from loosely synchronized clocks such as 
wrist watches and wall clocks. But in distributed computing systems, the 
rate of event occurrence is several magnitudes higher, and the event-exe- 
cution time several magnitudes smaller. If the physical clocks in these sys- 
tems are not synchronized precisely, the causality relation between events 
cannot be captured accurately. The notion of time is basic to capturing the 
causality between events. However, distributed systems have no built-in 
physical time and can only approximate it. Even the Internet’s Network 
Time which maintain a time accurate to a few tens of mil- 
liseconds, are not adequate for capturing causality in distributed systems. 
However, in a distributed computation, both the progress and the inter- 
action between processes occurs in spurts. Consequently, we can use log- 
ical clocks to accurately capture the causality relation between events. 

This article presents a general framework of a system of logical clocks 
in distributed systems and discusses three methods-scalar, vector, and 
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Figure 1. The time diagram of a distributed 
execution. 

matrix-for implementing logical time in these systems. 
In these methods, time is represented by non-negative 
integers, a vector of non-negative integers, and a matrix 
of non-negative integers, respectively. 

A MODEL OF DISTRIBUTED 
EXECUTIONS 

A distributed program is composed of a set of n asyn- 
chronous processespl,pz,. . . , p c , .  . . , p n  that communicate 
by message-passing over a communication network. The 
processes do not share global memory and communicate 
solely by passing messages. The communication delay is 
finite and unpredictable. Also, these processes do not share 
a global clock that they can access instantaneously. Process 
execution and message transfer are asynchronous. A 
process can execute an event spontaneously; when send- 
ing a message, it does not have to wait for the delivery to 
be complete. 

Distributed executions 

events 
The execution of process p ,  produces a sequence of 

eo,ef ,  . . . ,e:, e:+’, . . . , 

denoted by q, where 

and a slanted arrow indicates a message transfer. In this 
execution, a 4 b, b + d, and b I I c. 

Relevant events 
Generally, few events are relevant at an observation or 

application level. For example, in a checkpointing proto- 
col, onlylocal checkpoint events are relevant. LetR denote 
the set of relevant events. Let +R be the restriction of + to 
the events in R. That is, 

Ye,, e,€ R: e ,  +Re2 we, + e2 

An observation level defines a projection of the events in 
the distributed computation. The distributed computation 
defined bythe observationlevelR is denoted as K= (R, jR). 

For example, if in Figure 1, only events a, b, c, and d are rel- 
evant to an observation level (R = {a ,  b, c, d } ) ,  then +R is 
defined as follows: -sR= {(a ,  b) ,  (a,  c), (a,  d ) ,  (b, d ) ,  (c, d ) } .  

LOGICAL CLOCKS: A MECHANISM TO 
CAPTURE CAUSALIN 

In a system of logical clocks, every process has a logical 
clock that is advanced usihg a set of rules. Every event is 
assigned a timestamp, by which a process can infer the 
causality relation between events. The timestamps 
assigned to events obey the fundamental monotonicity 
property. That is, if an event a causally affects an event b, 
the timestamp of a is smaller than the timestamp of b. 

A system of logical clocks consists of a time domain T 
and a logical clock C. Elements of T form a partially 
ordered set over a relation <. This relation is usually called 
“happened before” or causal precedence. Intuitively, this 
relation is analogous to the “earlier than” relation pro- 
vided by physical time. The logical clock C is a function 
that maps an event e in a distributed system to an element, 
denoted as C(e)  and called the timestamp of e ,  in the time 
domain T. The clock is defined as 

C : H t + T  

The set of events produced byp, is h,. The binary relation 
+: defines a total order on these events and expresses 
causal dependencies among the events ofp,. 

We define the relation +msp as follows: For every mes- 
sage m exchanged between two processes, we have 

send(m) +msg receive(m) 

The relation +msg defines causal dependencies berween 
the pairs of corresponding send and receive events. 

The distributed execution of a set of processes is apartial 
order H = (H,  +), whereH= U, h, and + = (U, -+t U -+,&. 
The relation + expresses causal dependencies among the 
events in the distributed execution of a set of processes. If 
e,  + e2, e2 is directly or transitively dependent on e,. If 
e2 + e, and e2 + e, , events e,  and e2 are concurrent, 
denoted as e,  1 I e2. Clearly, for any two events e, and e2 in 
a distributed execution, e, + e2, e2 +e,, or e, 1 I e2. 

Figure 1 shows the time diagram of a distributed exe- 
cution involving three processes. A horizontal line repre- 
sents the progress of the process, a dot indicates an event, 

to satisfy the following property: 

e,  + e2 * C(e,) < C(eJ 

This monotonicity property is called the clock consistency 
condition. When T and C satisfy the following condition, 

the system of clocks is said to be strongly consistent. 

implementing logical clocks 
Implementing logical clocks requires addressing two 

issues: determining data structures local to every process 
to represent logical time and designing a protocol (set of 
rules) to update the data structures to ensure the consis- 
tency condition. 

Each processp, maintains data structures that give it the 
following two capabilities: 

Alocal logical clock, denoted byk,, that helpsp, mea- 
sure its own progress; and 
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A global logical clock, denoted bygc,, that represents 
pi's local view of the global logical time. It allows the 
process to assign consistent timestamps to its local 
events. Typically, IC, is a part of gc,. 

The protocol ensures that a process’s logical clock, and 
thus its view of the global time, is managed consistently. 
The protocol consists of the following two rules: 

R1. This governs how a process updates the local log- 
ical clock (to capture its progress) when it executes 
an event, whether send, receive, or internal. 
R2. This governs how a process updates its global log- 
ical clock to update its view of the global time and 
global progress. It dictates what information about 
the logical time a process piggybacks in a message 
and how the receiving process uses this information 
to update its view of the global time. 

Systems of logical clocks differ in their representation 
of logical time and in the protocol for updating logical 
clocks. However, all logical clock systems implement some 
form of R 1  and R2 and consequently ensure the funda- 
mental monotonicity property associated with causality. 
Moreover, each logical clock system provides users with 
additional properties, as we discuss. 

SCALAR TIME 
Lamport proposed the scalar time representation in 

1978, for totally ordering events in a distributed system. In 
this representation, the time domain is the set of non-neg- 
ative integers. The logical local clock of a process p l  and 
its local view of the global time are squashed into one inte- 
ger variable, C,. 

Rules R1 and R2 update the clocks as follows. 

R1. Before executing an event (send, receive, or inter- 
nal), p ,  executes the following: 

C,:=C,+d ( d > O )  

In general, every time R 1  is executed, d can have a differ- 
ent value, which can be application-dependent. However, 
d is typically kept at 1, since this allows a process to iden- 
tify the time of each event uniquely at a process while min- 
imizing d’s rate of increase. 

R2. Each message piggybacks the clock value of its 
sender at sending time. Whenp, receives a message 
with the timestamp Cmsg, it executes the following 
actions: 

1. C, := max(C,, Cmsg) 
2. Execute R1. 
3.  Deliver the message. 

Figure 2 shows the evolution of scalar time, using d = 1 for 
the computation from Figure 1. 

Basic properties 
Clearly, scalar clocks satisfy monotonicity, and hence 

the consistency property. In addition, a distributed system 

I I 
Figure 2. Evolution of scalar time in distributed 
execution. 

can use scalar clocks to totally order events.2 The main 
problem in totally ordering the events is that two or more 
events at different processes can have the identical time- 
stamp. For example, in Figure 2, the third event of process 
p1 and the second one of processp, receive the same scalar 
timestamp. We require a tie-breaking mechanism to order 
such events. Typically, process identifiers are linearly 
ordered, and a tie among events with the identical scalar 
timestamp is broken on the basis of their process identi- 
fiers. The timestamp of an event is denoted by a tuple (t, 
i), where tis its time of occurrence and i is the process at 
which it occurred. The total order relation < on two 
events x andy with timestamps (h, i) and ( k ,  j), respec- 
tively, is 

Since events that occur at the same logical scalar time 
are independent (that is, not causallyrelated), the system 
can order them using any criterion without violating the 
causalityrelation +. Therefore, a total order is consistent 
with the causality relation 4. A total order is generally 
used to ensure liveness properties in distributed algo- 
rithms (requests are timestamped and served according 
to the total order on these timestamps).2 

When the increment valued is always 1, scalar time has 
an interesting property. If event e has a timestamp h, then 
h - 1 represents the minimum logical duration, counted 
in events, required before producing e.3 We call this the 
height of e. In otherwords, we know that h - 1 events have 
been produced sequentially before e regardless of the 
processes that produced these events. For example, in 
Figure 2, five events precede event b on the longest causal 
path ending at b. 

However, the system of scalar clocks is not strongly con- 
sistent. That is, for two events e, and e,, 

For example, in Figure 2, the third event of processp, has 
a smaller scalar timestamp than the third event of p , .  
However, the former did not happen before the latter. 
Scalar clocks are not strongly consistent because the local 
logical clock and global logical clock are squashed into 
one, losing the causal dependency information among 
events at different processes. In Figure 2, whenp, receives 
the first message fromp,, it updates its clock to 3, forget- 
ting that the timestamp of the latest event atp,, on which 
it depends, is 2. 
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:igure 3. Evolution of vector time in distributed sys- 
‘ems. 

ECTOR TIME 
Fidge,3 Mat t e~n ,~  and Schmuck5 each developed a sys- 

2m ofvector clocks independently (see ‘Vector clocks: A 
istorical perspective” sidebar). In the system of vector 
locks, the time domain is represented by a set of n-dimen- 
ional, non-negative integer vectors. Each processp, main- 
sins a vector vt, [ 1 .. n] ,  where vt, [i] is the local logical 
lock ofp, and describes the logical time progress atp,. 
t,u] represents pt’s latest knowledge of pj’s local time. If 
t,u] =x, p :  knows that the local time atp, has progressed 

Basic properties 

up tox. The entire vector vt, constitutesp,’~ view of the log- 
ical global time;p, uses it to timestamp events. 

The process p t  uses the following R1 and R2 to update 
its clock. 

R1. Before executing an event,p, updates its local log- 
ical time as follows: 

vt,[i] :=vt,[i] + d  ( d > 0 )  

R2. Each sender process piggybacks a message m 
with its vector clock value at sending time. Upon 
receiving such a message (m, vt), p 1  executes the fol- 
lowing sequence of actions: 

1. Update its logical global time as follows: 

l c :k<n:v t , [k]  :=max(vt,[kl,vt[k]) 

2. Execute R1. 
3. Deliver the message m. 

An event’s timestamp is the value of its process’s vector 
clock at the time the event is executed. Figure 3 shows an 
example of avector clock’s progression with the increment 
valued = 1. 

ISOMORPHISM. The following three relations compare 
two vector timestamps, vh and vk: 

vh5vk e V x : v h [ x I I v k [ x l  
vh<vk w v h ~ v k a n d 3 x : v h [ x l  <vk[x] 
vh I I vk a not (vh < vk) and not (vk < vh) 

Recall that relation i induces a partial order on the set 
of events produced by a distributed execution. Time- 
stamping events in a distributed system using a system of 
vector clocks creates the following property. If two events 
x andy have timestamps vh and vk, respectively, then: 

An isomorphism thus exists between the set of partially 
ordered events produced by a distributed computation 
and their timestamps. This is a powerful, useful, and inter- 
estingproperty ofvector clocks. If we know the process at 
which an event occurred, we can simplify the test to com- 
pare two timestamps as follows: If eventsx andy occurred 
respectively at processes p ,  and p, and are assigned time- 
stamps (vh, i) and (vk,]) respectively, 

x+y  U vh[il<vk[i] 
x I I y e~ vhCz1 >vk[il andvhCjl <vkCjl 

STRONG CONSISTENCY. The system of vector clocks is 
strongly consistent. We can thus determine whether two 
events are causally related by comparing their vector time- 
stamps. However, the dimension of vector clocks cannot be 
less than n for this property to apply.6 
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EVENT COUNTING. If d is always 1 in the rule R1, the ith 
component of vector clock at pr, vt,[i], denotes the num- 
ber of events that have occurred atp, until that instant. So 
if an event e has the timestamp vh, vhb] denotes the num- 
ber of events executed byp, that causally precede e. Clearly, 
C vhb] - 1 represents the total number of events that 
causally precede e in the distributed computation. 

APPLICATIONS. Since vector time tracks causal depen- 
dencies exactly, it finds a widevariety of applications. For 
example, it is used in distributed debugging, implement- 
ing causal ordering communication and causal distributed 
shared memory, establishing global breakpoints, and 
implementing the consistency of checkpoints in optimistic 
recovery. 

MATRIX TIME 
Michael and Fischer informally proposed a system of 

matrix clocks in 1982.7 Both Wuu and Bernstein8 and 
Lynch and Sarin9 employed the system to discard obsolete 
information in replicated databases. In a system of matrix 
clocks, time is represented by a set of n x n matrices of non- 
negative integers. A processp, maintains a matrix mt,[l .. 
n, 1 .. n], where 

mt,[i, i] denotes the local logical clockofp, and tracks 
the progress of the computation atp,; 
mt,[i, j] denotes the latest knowledge thatp, has about 
the local logical clock, mt,b, j], ofp, (note that row 
mt,[i, .] is nothing but the vector clock vt,[.] and 
exhibits all the properties of vector clocks); and 
mt,[j, k] represents whatp, knows about the latest 
knowledge that p, has about the local logical clock, 
mt,[k, kl, Of& 

The entire matrix mt, denotes p,'s local view of the logical 
global time. The matrix timestamp of an event is the value 
of the matrix clock of the process when the event is executed. 

Processp, uses the following rules R1 and R2 to update 
its clock. According to R1, before executing an event, p I  
updates its local logical time as follows: 

mt,[i,i] :=mt,[i,il + d  (d>O)  

Under R2, each message m is piggybacked with the 
matrix time mt. Whenp, receives such a message (m, mt) 
from p,, p ,  executes the following sequence of actions: 

1. Update its logical global time as follows: 

1 2  k <: n : mt,[i, k] := max(mt,[i, kl, mtb, kl) 
1 i k, 15 n : mt,[k, I] := max(mt,[k, 11, mt[k, 11) 

2. Execute R1. 
3.  Deliver message m. 

Figure 4 shows how matrix clocks progress in a distrib- 
uted computation. We assume d = 1, so every event at a 
process gets a locally unique sequence number. Let us con- 
sider the following events: e, which is the x,th event at 
processp,; e i  and e:, which are thexkth andx2,th event at 
processp,; and e; and e;, which are thexjth andx: th events 

. .  

Figure 4. Evolution of matrix time in distributed 
systems. 

atp,. Let mt, denote the matrix timestamp associated with 
e. Due to message m4, e: is the last event ofp, that causally 
precedes e, therefore, mt,[i,k] =mt,[k,k] =x$. Likewise, 
mt,[i,j] =mt,[j,j] =x:. The last event ofp, known byp,, as 
far as p ,  knew when it executed e, is e:; therefore, 
mt,[j,k] =xi. Likewise, we have mt,[ k,j] =x:. 

Basic properties 
Clearly, the vector mt,[i, .] contains all the properties of 

vector clocks. In addition, matrix clocks have the follow- 
ing property: 

min mt k,1 2 t =1 process p ,  knows that every other 
processp, knows thep,'s local time 
has progressed until t 

k ( 1) 

If this is true,p, knows that all other processes know that 
pi will never send information with a local time 5 t. In 
many applications, this implies that processes will no 
longer require certain information fromp, and can use this 
fact to discard obsolete information. 

If d is always 1 in the rule R1, then mt,[k, I] denotes the 
number of events occurred atp, and known byp,, as far as 
pL knows. 

EFFICIENT IMPLEMENTATIONS 
When there are a large number of processes in a dis- 

tributed computation, the vector and matrix clocks must 
piggyback huge amounts of information in messages to 
disseminate time progress and update the clocks. In this 
section, we discuss efficient ways to maintain vector 
clocks; we could use similar techniques to efficiently 
implement matrix clocks. 

If vector clocks must satisfy the strong consistencyprop- 
erty, vector timestamps must be at least of size n.6 
Therefore, in general, the size of a vector timestamp equals 
the number of processes involved in a distributed compu- 
tation. However, several optimizations are possible. 

Singhal-Kshemkalyani's differential technique 
Singhal and Kshemkalyani's technique" is based on an 

observation that between successive events at a process, 
only a few entries of the vector clock are likely to change. 
This is more likelywhen the number of processes is large, 
since only a few of them will interact frequently by pass- 
ing messages. In Singhal-Kshemkalyani's differential tech- 
nique, when a process pl  sends a message to a process p,, 
pt piggybacks only those entries of its vector clock that 
have changed since the last message it sent top,. Therefore, 
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PI 

P2 

P3 

Figure 5.  The Singhal-Kshemkalyani technique for 
vector clocks. 

Figure 6. The Fowler-Zwaenepoel technique for vec 
tor clocks. 

this technique cuts down the communication bandwidth 
and buffer requirements (to store messages). However, a 
process needs to maintain two additional vectors to store 
the information regarding the clockvalues at the time of 
the last interaction with other processes. 

Figure 5 illustrates the Singhal-Kshemkalyani tech- 
nique. If entries z,, z2, . . . , z,, of pc's vector clock have 
changed (to v,, v2, . . . , vnl, respectively) since the last mes- 
sage top,,p, piggybacks a compressed rimestamp { ( i ,  vJ, 
(i2, v2), . . . , (in,, v,,)} in its next message to p,. When p, 
receives this message, it updates its clock as follows: vt,[k] 
:= max(vt,[k], vk) fork = 1,2, . . . , nl .  This technique can 
substantially reduce the cost of maintaining vector clocks 
in large systems if process interaction exhibits temporal 
or spatial localities. However, it requires that communi- 
cation channels be first-in, first-out. 

Fowler-Zwaenepoel's direct-dependency 
technique 

Fowler-Zwaenepoel's direct-dependency technique" 
does not maintain vector clocks on the fly. Instead, a 
process maintains information regarding only direct 
dependencies on other processes. It constructs a vector 
time for an event, representing transitive dependencies 
on other processes, off-line from a recursive search of the 
direct-dependency information at processes. A processp, 
maintains a dependency vector D, that is initiallyD,Cj] = 0 
forj = 1 .. n. p z  updates it as follows: 

Whenanevent occurs atp,,D,[il :=D,[il+ 1. 
0 When p, sends a message m top!, p, piggybacks the 

updated value of D, E] in the message. 
When pi receives a message from p, with the piggy- 
backed value d,  pr updates its dependency vector as 
follows: D,k] :=max{D,bJ, d} .  

The dependency vector at a process thus reflects only 
direct dependencies. At any instant, D,bJ denotes the 
sequence number of the latest event onp, that affects the 
current state directly. Note that this event may precede the 
latest event atp, that affects the current state causally. 

Figure 6 illustrates the Fowler-Zwaenepoel technique. 
The technique provides considerable cost savings, since 
only one scalar is piggybacked on every message. 

However, the dependencyvector does not represent tran- 
sitive dependencies (that is, vector timestamps). Instead, 
the technique obtains the transitive dependency of an 
event by recursively tracing the direct-dependency vec- 
tors of processes. This will obviously create overhead and 
latencies, making the technique unsuitable for applica- 
tions that require on-the-fly computation of vector time- 
stamps. Nonetheless, it is ideal for applications that 
compute causal dependencies off line, such as causal 
breakpoint and asynchronous checkpointing recovery. 

Jard-Jourdan's adaptive technique 
The Fowler-Zwaenepoel technique requires a process to 

observe an event-that is, update and record its depen- 
dency vector-after receiving a message and before send- 
ing out any. Otherwise, reconstructing a vector timestamp 
from the direct-dependency vectors will not capture all 
causal dependencies. When events are highly frequent, this 
technique requires recording the history of a large number 
of events. The Jard-Jourdan technique12 lets processes adap- 
tively observe events while maintaining the ability to 
retrieve all the causal dependencies of such events. 

Jard and Jourdan defined the pseudodirect relation << 
on the events of a distributed computation as follows. If 
events e, and e, occur at processes pz and p], respectively, 
then e, << e ,  if and only if a path of message transfers exists 
which starts after e, onp, and ends before e, onp,, such that 
no observed event exists on the path. 

The partialvector clockp-vt, atp, is a list of tuples of the 
form (j, v), indicating that the current state ofp, is pseu- 
dodependent on the event atp, whose sequence number 
is v. Initially, at a processp,, p-vt,= { (z, O ) } .  

Whenever an event is observed at pL, the following 
actions are executed, (letp-vt, = { (zl,vl), . . . , (i,v), . , . } 
denote the current partial vector clock atp, and variable 
e-vt, holds the timestamp of the observed event): 

e-vt, = {(il, v l ) ,  . . . , (i,v), . . . } 
$7-vt, := { (i, v + 1)) 

Whenp, sends a message top>, it piggybacks the current 
value ofp-vt, in the message. Whenp, receives a message 
piggybacked with the timestamp p-vt, p ,  sets p-vt, to rhe 
union of the following (letp-vt= { (iml, vmJ, . . , ( I ~ ~ ,  v,,)} 
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andp-vt, = vJ, . . . , (4, vi)>): 

all (im, vm) such that (im, .) does not 

all (ix, VJ such that (ix, .) does not 

all (ix, max(vx, v,)) for all (vx, .) that 

appear in v-pf, 

appear in v-pt, and 

appear in v-pt and v-pt,. 

Figure 7 illustrates the Jard-Jourdan 
technique for maintaining vector clocks. 
e X p t ,  denotes the timestamp of the Xth 
observed event atp,. For example, the third 
event observed atp, is timestamped e3_pt3 
= ((3, 2) ,  (4, 1)). This timestamp means 
that the pseudodirect predecessors of this 
event are respectively the second event 
observed at p3 and the first observed at p4. 
So, given the timestamp of an event, we can 
easily compute the set of observed events 
that are its predecessors. 

nous distributed system. A'synchronous distributed program 
executes in a lock-step manner; i t s  progress relies on a 
global time assumption. In the semantics of synchronous 
distributed programs, a global time preexists and partici- 
pates in the execution of such programs. A synchronizer 
interprets synchronous distributed programs and simulates 
a global time for them in an asynchronous environment2 

In distributed, discrete-event simulat ion~,~,~ the seman- 
t ics  of the simulation program rely on a global (or so-called 
simulation) time. I t s  progress ensures that the simulation 
program has the liveness property. In the execution of a dis- 
tributed simulation, it must be ensured that the virtual time 
progresses (has the liveness property) in a way that avoids 
violating the causality relations of the program, providing 
the necessary safety conditions. 

The global time built by a synchronizer or by a distrib- 
uted simulation runtime environment drives the underly- 
ing program and should not be confused with the logical 
time. It belongs t o  the underlying program semantics and 
is nothing but the virtual5 counterpart of the physical time 
offered by the environment and used in real-time applica- 
tions. On the other hand, logical time (whether linear, vec- 
tor, or matrix) orders events according t o  their causal 
precedence t o  ensure properties such as liveness, consis- 
tency, and fairness. Such logical time is  just one means t o  

ness; t h i s  time belongs neither ;o the mutual exclusion 
semantics nor the program invoking mutual exclusion. In 
fact, other means can ensure properties such as liveness. 
For example, Chandy and Misra's mutual exclusion algo- 
rithm7 employs a dynamic, directed, acyclic graph instead 
of clocks t o  ensure liveness. 
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We have presented a general framework of logical clocks 
n distributed systems and have discussed three systems of 
ogical clocks: scalar, vector, and matrix. These systems 
lave been used to solve avariety of problems in distributed 
ilgorithm design, debugging distributed programs, check- 
Iointing and failure recovery, data consistency in repli- 
:ated databases, discarding obsolete information, garbage 
:ollection, and termination detection. 

In scalar clocks, the clock at a process is represented by 
in integer. The message and computation overheads are 
;mall, but the power of scalar clocks is limited-they are 
iot strongly consistent. In vector clocks, the clock at a 
irocess is represented by a vector of integers. Thus, the 
nessage and computation overheads are likely to be high; 
iowever, vector clocks possess a powerful property--the 
somorphism that exists between the set of partially 
xdered events in a distributed computation and theirvec- 
:or timestamps. This useful, interesting property of vector 
:locks finds applications in several problem domains. In 
natrix clocks, the clock at a process is represented by a 
natrix of integers. Thus, the message and computation 
Iverheads are high; however, matrix clocks are quite pow- 
2rful. Besides containing information about the direct 
iependencies, a matrix clock contains information about 
:he latest direct dependencies of those dependencies, This 
information can be useful in applications such as distrib- 
uted garbage collection. Thus, the power of systems of 
:locks increases in the order of scalar, vector, and matrix, 
but so do the complexityand overheads. 

We discussed three efficient implementations ofvector 
clocks; similar techniques can be used to efficientlyimple- 
ment matrix clocks. I 
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