
LOGICAL TIME:

U

Distributed Systems
Michel Raynal
University of Rennes

IVIukesh Singhal
Ohio State University

m
Causality-determining which

event happens before what

others-is vital in

distributed computations.

Distributed systems can

determine causality using

logical clocks.

distributed computation consists of a set of processes that coop-
erate and compete to achieve a common goal. These processes
do not share a common global memory and communicate solely

by passing messages over a communication network. The communication
delay is finite but unpredictable. A process’s actions are modeled as three
types of events: internal, message send, and message receive. An internal
event affects only the process at which it occurs, and the events at a process
are linearly ordered by their order of occurrence. Send and receive events
signify the flow of information between processes and establish causal
dependency from the sender process to the receiver process. Consequently,
the execution of a distributed application results in a set of distributed
events produced by the process. The causal precedence relation induces a
partial order on the events of a distributed computation.

Causality among events, more formally the causal precedence relation,
is a powerful concept for reasoning, analyzing, and drawing inferences
about a distributed computation. The knowledege of the causal prece-
dence relation between processes helps programmers, designers, and the
system itself solve a variety of problems in distributed computing. In dis-
tributed algorithms design, such knowledge helps ensure liveness and
fairness in mutual exclusion algorithms, maintains consistency in repli-
cated databases, and helps design deadlock-detection algorithms that
avoid phantom and undetected deadlocks. It also helps construct a con-
sistent state for resuming reexecution in distributed debugging, build a
checkpoint in failure recovery, and detect file inconsistencies in replicated
databases. Such knowledge lets a process measure the progress of other
processes, which is useful when discarding obsolete information, collect-
ing garbage, and detecting termination. Finally, knowing the number of
causally dependent events helps measure the amount of concurrency in
a computation, since all events not causally related can be executed con-
currently.

Human beings use the concept of causality to plan, schedule, and exe-
cute an enterprise, or to determine a plan’s feasibility. In daily life, we use
global time to deduce causality from loosely synchronized clocks such as
wrist watches and wall clocks. But in distributed computing systems, the
rate of event occurrence is several magnitudes higher, and the event-exe-
cution time several magnitudes smaller. If the physical clocks in these sys-
tems are not synchronized precisely, the causality relation between events
cannot be captured accurately. The notion of time is basic to capturing the
causality between events. However, distributed systems have no built-in
physical time and can only approximate it. Even the Internet’s Network
Time which maintain a time accurate to a few tens of mil-
liseconds, are not adequate for capturing causality in distributed systems.
However, in a distributed computation, both the progress and the inter-
action between processes occurs in spurts. Consequently, we can use log-
ical clocks to accurately capture the causality relation between events.

This article presents a general framework of a system of logical clocks
in distributed systems and discusses three methods-scalar, vector, and

February 1996 0018-9162/96/$5.00 0 1996 IEEE

Figure 1. The time diagram of a distributed
execution.

matrix-for implementing logical time in these systems.
In these methods, time is represented by non-negative
integers, a vector of non-negative integers, and a matrix
of non-negative integers, respectively.

A MODEL OF DISTRIBUTED
EXECUTIONS

A distributed program is composed of a set of n asyn-
chronous processespl,pz,. . . , p c , . . . , p n that communicate
by message-passing over a communication network. The
processes do not share global memory and communicate
solely by passing messages. The communication delay is
finite and unpredictable. Also, these processes do not share
a global clock that they can access instantaneously. Process
execution and message transfer are asynchronous. A
process can execute an event spontaneously; when send-
ing a message, it does not have to wait for the delivery to
be complete.

Distributed executions

events
The execution of process p , produces a sequence of

eo,ef , . . . ,e:, e:+’, . . . ,

denoted by q, where

and a slanted arrow indicates a message transfer. In this
execution, a 4 b, b + d, and b I I c.

Relevant events
Generally, few events are relevant at an observation or

application level. For example, in a checkpointing proto-
col, onlylocal checkpoint events are relevant. LetR denote
the set of relevant events. Let +R be the restriction of + to
the events in R. That is,

Ye,, e,€ R: e , +Re2 we, + e2

An observation level defines a projection of the events in
the distributed computation. The distributed computation
defined bythe observationlevelR is denoted as K= (R, jR).

For example, if in Figure 1, only events a, b, c, and d are rel-
evant to an observation level (R = {a , b, c, d }) , then +R is
defined as follows: -sR= {(a , b) , (a, c), (a, d) , (b, d) , (c, d) } .

LOGICAL CLOCKS: A MECHANISM TO
CAPTURE CAUSALIN

In a system of logical clocks, every process has a logical
clock that is advanced usihg a set of rules. Every event is
assigned a timestamp, by which a process can infer the
causality relation between events. The timestamps
assigned to events obey the fundamental monotonicity
property. That is, if an event a causally affects an event b,
the timestamp of a is smaller than the timestamp of b.

A system of logical clocks consists of a time domain T
and a logical clock C. Elements of T form a partially
ordered set over a relation <. This relation is usually called
“happened before” or causal precedence. Intuitively, this
relation is analogous to the “earlier than” relation pro-
vided by physical time. The logical clock C is a function
that maps an event e in a distributed system to an element,
denoted as C(e) and called the timestamp of e , in the time
domain T. The clock is defined as

C : H t + T

The set of events produced byp, is h,. The binary relation
+: defines a total order on these events and expresses
causal dependencies among the events ofp,.

We define the relation +msp as follows: For every mes-
sage m exchanged between two processes, we have

send(m) +msg receive(m)

The relation +msg defines causal dependencies berween
the pairs of corresponding send and receive events.

The distributed execution of a set of processes is apartial
order H = (H, +), whereH= U, h, and + = (U, -+t U -+,&.
The relation + expresses causal dependencies among the
events in the distributed execution of a set of processes. If
e, + e2, e2 is directly or transitively dependent on e,. If
e2 + e, and e2 + e, , events e, and e2 are concurrent,
denoted as e, 1 I e2. Clearly, for any two events e, and e2 in
a distributed execution, e, + e2, e2 +e,, or e, 1 I e2.

Figure 1 shows the time diagram of a distributed exe-
cution involving three processes. A horizontal line repre-
sents the progress of the process, a dot indicates an event,

to satisfy the following property:

e, + e2 * C(e,) < C(eJ

This monotonicity property is called the clock consistency
condition. When T and C satisfy the following condition,

the system of clocks is said to be strongly consistent.

implementing logical clocks
Implementing logical clocks requires addressing two

issues: determining data structures local to every process
to represent logical time and designing a protocol (set of
rules) to update the data structures to ensure the consis-
tency condition.

Each processp, maintains data structures that give it the
following two capabilities:

Alocal logical clock, denoted byk,, that helpsp, mea-
sure its own progress; and

Computer

A global logical clock, denoted bygc,, that represents
pi's local view of the global logical time. It allows the
process to assign consistent timestamps to its local
events. Typically, IC, is a part of gc,.

The protocol ensures that a process’s logical clock, and
thus its view of the global time, is managed consistently.
The protocol consists of the following two rules:

R1. This governs how a process updates the local log-
ical clock (to capture its progress) when it executes
an event, whether send, receive, or internal.
R2. This governs how a process updates its global log-
ical clock to update its view of the global time and
global progress. It dictates what information about
the logical time a process piggybacks in a message
and how the receiving process uses this information
to update its view of the global time.

Systems of logical clocks differ in their representation
of logical time and in the protocol for updating logical
clocks. However, all logical clock systems implement some
form of R 1 and R2 and consequently ensure the funda-
mental monotonicity property associated with causality.
Moreover, each logical clock system provides users with
additional properties, as we discuss.

SCALAR TIME
Lamport proposed the scalar time representation in

1978, for totally ordering events in a distributed system. In
this representation, the time domain is the set of non-neg-
ative integers. The logical local clock of a process p l and
its local view of the global time are squashed into one inte-
ger variable, C,.

Rules R1 and R2 update the clocks as follows.

R1. Before executing an event (send, receive, or inter-
nal), p , executes the following:

C,:=C,+d (d > O)

In general, every time R 1 is executed, d can have a differ-
ent value, which can be application-dependent. However,
d is typically kept at 1, since this allows a process to iden-
tify the time of each event uniquely at a process while min-
imizing d’s rate of increase.

R2. Each message piggybacks the clock value of its
sender at sending time. Whenp, receives a message
with the timestamp Cmsg, it executes the following
actions:

1. C, := max(C,, Cmsg)
2. Execute R1.
3. Deliver the message.

Figure 2 shows the evolution of scalar time, using d = 1 for
the computation from Figure 1.

Basic properties
Clearly, scalar clocks satisfy monotonicity, and hence

the consistency property. In addition, a distributed system

I I
Figure 2. Evolution of scalar time in distributed
execution.

can use scalar clocks to totally order events.2 The main
problem in totally ordering the events is that two or more
events at different processes can have the identical time-
stamp. For example, in Figure 2, the third event of process
p1 and the second one of processp, receive the same scalar
timestamp. We require a tie-breaking mechanism to order
such events. Typically, process identifiers are linearly
ordered, and a tie among events with the identical scalar
timestamp is broken on the basis of their process identi-
fiers. The timestamp of an event is denoted by a tuple (t,
i), where tis its time of occurrence and i is the process at
which it occurred. The total order relation < on two
events x andy with timestamps (h, i) and (k , j), respec-
tively, is

Since events that occur at the same logical scalar time
are independent (that is, not causallyrelated), the system
can order them using any criterion without violating the
causalityrelation +. Therefore, a total order is consistent
with the causality relation 4. A total order is generally
used to ensure liveness properties in distributed algo-
rithms (requests are timestamped and served according
to the total order on these timestamps).2

When the increment valued is always 1, scalar time has
an interesting property. If event e has a timestamp h, then
h - 1 represents the minimum logical duration, counted
in events, required before producing e.3 We call this the
height of e. In otherwords, we know that h - 1 events have
been produced sequentially before e regardless of the
processes that produced these events. For example, in
Figure 2, five events precede event b on the longest causal
path ending at b.

However, the system of scalar clocks is not strongly con-
sistent. That is, for two events e, and e,,

For example, in Figure 2, the third event of processp, has
a smaller scalar timestamp than the third event of p , .
However, the former did not happen before the latter.
Scalar clocks are not strongly consistent because the local
logical clock and global logical clock are squashed into
one, losing the causal dependency information among
events at different processes. In Figure 2, whenp, receives
the first message fromp,, it updates its clock to 3, forget-
ting that the timestamp of the latest event atp,, on which
it depends, is 2.

February 1996

:igure 3. Evolution of vector time in distributed sys-
‘ems.

ECTOR TIME
Fidge,3 Mat t e~n ,~ and Schmuck5 each developed a sys-

2m ofvector clocks independently (see ‘Vector clocks: A
istorical perspective” sidebar). In the system of vector
locks, the time domain is represented by a set of n-dimen-
ional, non-negative integer vectors. Each processp, main-
sins a vector vt, [1 .. n] , where vt, [i] is the local logical
lock ofp, and describes the logical time progress atp,.
t,u] represents pt’s latest knowledge of pj’s local time. If
t,u] =x, p : knows that the local time atp, has progressed

Basic properties

up tox. The entire vector vt, constitutesp,’~ view of the log-
ical global time;p, uses it to timestamp events.

The process p t uses the following R1 and R2 to update
its clock.

R1. Before executing an event,p, updates its local log-
ical time as follows:

vt,[i] :=vt,[i] + d (d > 0)

R2. Each sender process piggybacks a message m
with its vector clock value at sending time. Upon
receiving such a message (m, vt), p 1 executes the fol-
lowing sequence of actions:

1. Update its logical global time as follows:

l c :k<n:v t , [k] :=max(vt,[kl,vt[k])

2. Execute R1.
3. Deliver the message m.

An event’s timestamp is the value of its process’s vector
clock at the time the event is executed. Figure 3 shows an
example of avector clock’s progression with the increment
valued = 1.

ISOMORPHISM. The following three relations compare
two vector timestamps, vh and vk:

vh5vk e V x : v h [x I I v k [x l
vh<vk w v h ~ v k a n d 3 x : v h [x l <vk[x]
vh I I vk a not (vh < vk) and not (vk < vh)

Recall that relation i induces a partial order on the set
of events produced by a distributed execution. Time-
stamping events in a distributed system using a system of
vector clocks creates the following property. If two events
x andy have timestamps vh and vk, respectively, then:

An isomorphism thus exists between the set of partially
ordered events produced by a distributed computation
and their timestamps. This is a powerful, useful, and inter-
estingproperty ofvector clocks. If we know the process at
which an event occurred, we can simplify the test to com-
pare two timestamps as follows: If eventsx andy occurred
respectively at processes p , and p, and are assigned time-
stamps (vh, i) and (vk,]) respectively,

x+y U vh[il<vk[i]
x I I y e~ vhCz1 >vk[il andvhCjl <vkCjl

STRONG CONSISTENCY. The system of vector clocks is
strongly consistent. We can thus determine whether two
events are causally related by comparing their vector time-
stamps. However, the dimension of vector clocks cannot be
less than n for this property to apply.6

Computer

EVENT COUNTING. If d is always 1 in the rule R1, the ith
component of vector clock at pr, vt,[i], denotes the num-
ber of events that have occurred atp, until that instant. So
if an event e has the timestamp vh, vhb] denotes the num-
ber of events executed byp, that causally precede e. Clearly,
C vhb] - 1 represents the total number of events that
causally precede e in the distributed computation.

APPLICATIONS. Since vector time tracks causal depen-
dencies exactly, it finds a widevariety of applications. For
example, it is used in distributed debugging, implement-
ing causal ordering communication and causal distributed
shared memory, establishing global breakpoints, and
implementing the consistency of checkpoints in optimistic
recovery.

MATRIX TIME
Michael and Fischer informally proposed a system of

matrix clocks in 1982.7 Both Wuu and Bernstein8 and
Lynch and Sarin9 employed the system to discard obsolete
information in replicated databases. In a system of matrix
clocks, time is represented by a set of n x n matrices of non-
negative integers. A processp, maintains a matrix mt,[l ..
n, 1 .. n], where

mt,[i, i] denotes the local logical clockofp, and tracks
the progress of the computation atp,;
mt,[i, j] denotes the latest knowledge thatp, has about
the local logical clock, mt,b, j], ofp, (note that row
mt,[i, .] is nothing but the vector clock vt,[.] and
exhibits all the properties of vector clocks); and
mt,[j, k] represents whatp, knows about the latest
knowledge that p, has about the local logical clock,
mt,[k, kl, Of&

The entire matrix mt, denotes p,'s local view of the logical
global time. The matrix timestamp of an event is the value
of the matrix clock of the process when the event is executed.

Processp, uses the following rules R1 and R2 to update
its clock. According to R1, before executing an event, p I
updates its local logical time as follows:

mt,[i,i] :=mt,[i,il + d (d>O)

Under R2, each message m is piggybacked with the
matrix time mt. Whenp, receives such a message (m, mt)
from p,, p , executes the following sequence of actions:

1. Update its logical global time as follows:

1 2 k <: n : mt,[i, k] := max(mt,[i, kl, mtb, kl)
1 i k, 15 n : mt,[k, I] := max(mt,[k, 11, mt[k, 11)

2. Execute R1.
3. Deliver message m.

Figure 4 shows how matrix clocks progress in a distrib-
uted computation. We assume d = 1, so every event at a
process gets a locally unique sequence number. Let us con-
sider the following events: e, which is the x,th event at
processp,; e i and e:, which are thexkth andx2,th event at
processp,; and e; and e;, which are thexjth andx: th events

. .

Figure 4. Evolution of matrix time in distributed
systems.

atp,. Let mt, denote the matrix timestamp associated with
e. Due to message m4, e: is the last event ofp, that causally
precedes e, therefore, mt,[i,k] =mt,[k,k] =x$. Likewise,
mt,[i,j] =mt,[j,j] =x:. The last event ofp, known byp,, as
far as p , knew when it executed e, is e:; therefore,
mt,[j,k] =xi. Likewise, we have mt,[k,j] =x:.

Basic properties
Clearly, the vector mt,[i, .] contains all the properties of

vector clocks. In addition, matrix clocks have the follow-
ing property:

min mt k,1 2 t =1 process p , knows that every other
processp, knows thep,'s local time
has progressed until t

k (1)

If this is true,p, knows that all other processes know that
pi will never send information with a local time 5 t. In
many applications, this implies that processes will no
longer require certain information fromp, and can use this
fact to discard obsolete information.

If d is always 1 in the rule R1, then mt,[k, I] denotes the
number of events occurred atp, and known byp,, as far as
pL knows.

EFFICIENT IMPLEMENTATIONS
When there are a large number of processes in a dis-

tributed computation, the vector and matrix clocks must
piggyback huge amounts of information in messages to
disseminate time progress and update the clocks. In this
section, we discuss efficient ways to maintain vector
clocks; we could use similar techniques to efficiently
implement matrix clocks.

If vector clocks must satisfy the strong consistencyprop-
erty, vector timestamps must be at least of size n.6
Therefore, in general, the size of a vector timestamp equals
the number of processes involved in a distributed compu-
tation. However, several optimizations are possible.

Singhal-Kshemkalyani's differential technique
Singhal and Kshemkalyani's technique" is based on an

observation that between successive events at a process,
only a few entries of the vector clock are likely to change.
This is more likelywhen the number of processes is large,
since only a few of them will interact frequently by pass-
ing messages. In Singhal-Kshemkalyani's differential tech-
nique, when a process pl sends a message to a process p,,
pt piggybacks only those entries of its vector clock that
have changed since the last message it sent top,. Therefore,

February 1996

PI

P2

P3

Figure 5. The Singhal-Kshemkalyani technique for
vector clocks.

Figure 6. The Fowler-Zwaenepoel technique for vec
tor clocks.

this technique cuts down the communication bandwidth
and buffer requirements (to store messages). However, a
process needs to maintain two additional vectors to store
the information regarding the clockvalues at the time of
the last interaction with other processes.

Figure 5 illustrates the Singhal-Kshemkalyani tech-
nique. If entries z,, z2, . . . , z,, of pc's vector clock have
changed (to v,, v2, . . . , vnl, respectively) since the last mes-
sage top,,p, piggybacks a compressed rimestamp { (i , vJ,
(i2, v2), . . . , (in,, v,,)} in its next message to p,. When p,
receives this message, it updates its clock as follows: vt,[k]
:= max(vt,[k], vk) fork = 1,2, . . . , nl . This technique can
substantially reduce the cost of maintaining vector clocks
in large systems if process interaction exhibits temporal
or spatial localities. However, it requires that communi-
cation channels be first-in, first-out.

Fowler-Zwaenepoel's direct-dependency
technique

Fowler-Zwaenepoel's direct-dependency technique"
does not maintain vector clocks on the fly. Instead, a
process maintains information regarding only direct
dependencies on other processes. It constructs a vector
time for an event, representing transitive dependencies
on other processes, off-line from a recursive search of the
direct-dependency information at processes. A processp,
maintains a dependency vector D, that is initiallyD,Cj] = 0
forj = 1 .. n. p z updates it as follows:

Whenanevent occurs atp,,D,[il :=D,[il+ 1.
0 When p, sends a message m top!, p, piggybacks the

updated value of D, E] in the message.
When pi receives a message from p, with the piggy-
backed value d, pr updates its dependency vector as
follows: D,k] :=max{D,bJ, d} .

The dependency vector at a process thus reflects only
direct dependencies. At any instant, D,bJ denotes the
sequence number of the latest event onp, that affects the
current state directly. Note that this event may precede the
latest event atp, that affects the current state causally.

Figure 6 illustrates the Fowler-Zwaenepoel technique.
The technique provides considerable cost savings, since
only one scalar is piggybacked on every message.

However, the dependencyvector does not represent tran-
sitive dependencies (that is, vector timestamps). Instead,
the technique obtains the transitive dependency of an
event by recursively tracing the direct-dependency vec-
tors of processes. This will obviously create overhead and
latencies, making the technique unsuitable for applica-
tions that require on-the-fly computation of vector time-
stamps. Nonetheless, it is ideal for applications that
compute causal dependencies off line, such as causal
breakpoint and asynchronous checkpointing recovery.

Jard-Jourdan's adaptive technique
The Fowler-Zwaenepoel technique requires a process to

observe an event-that is, update and record its depen-
dency vector-after receiving a message and before send-
ing out any. Otherwise, reconstructing a vector timestamp
from the direct-dependency vectors will not capture all
causal dependencies. When events are highly frequent, this
technique requires recording the history of a large number
of events. The Jard-Jourdan technique12 lets processes adap-
tively observe events while maintaining the ability to
retrieve all the causal dependencies of such events.

Jard and Jourdan defined the pseudodirect relation <<
on the events of a distributed computation as follows. If
events e, and e, occur at processes pz and p], respectively,
then e, << e , if and only if a path of message transfers exists
which starts after e, onp, and ends before e, onp,, such that
no observed event exists on the path.

The partialvector clockp-vt, atp, is a list of tuples of the
form (j, v), indicating that the current state ofp, is pseu-
dodependent on the event atp, whose sequence number
is v. Initially, at a processp,, p-vt,= { (z, O) } .

Whenever an event is observed at pL, the following
actions are executed, (letp-vt, = { (zl,vl), . . . , (i,v), . , . }
denote the current partial vector clock atp, and variable
e-vt, holds the timestamp of the observed event):

e-vt, = {(il, v l) , . . . , (i,v), . . . }
$7-vt, := { (i, v + 1))

Whenp, sends a message top>, it piggybacks the current
value ofp-vt, in the message. Whenp, receives a message
piggybacked with the timestamp p-vt, p , sets p-vt, to rhe
union of the following (letp-vt= { (iml, vmJ, . . , (I ~ ~ , v,,)}

Computer

andp-vt, = vJ, . . . , (4, vi)>):

all (im, vm) such that (im, .) does not

all (ix, VJ such that (ix, .) does not

all (ix, max(vx, v,)) for all (vx, .) that

appear in v-pf,

appear in v-pt, and

appear in v-pt and v-pt,.

Figure 7 illustrates the Jard-Jourdan
technique for maintaining vector clocks.
e X p t , denotes the timestamp of the Xth
observed event atp,. For example, the third
event observed atp, is timestamped e3_pt3
= ((3, 2) , (4, 1)). This timestamp means
that the pseudodirect predecessors of this
event are respectively the second event
observed at p3 and the first observed at p4.
So, given the timestamp of an event, we can
easily compute the set of observed events
that are its predecessors.

nous distributed system. A'synchronous distributed program
executes in a lock-step manner; i t s progress relies on a
global time assumption. In the semantics of synchronous
distributed programs, a global time preexists and partici-
pates in the execution of such programs. A synchronizer
interprets synchronous distributed programs and simulates
a global time for them in an asynchronous environment2

In distributed, discrete-event simulat ion~,~,~ the seman-
t ics of the simulation program rely on a global (or so-called
simulation) time. I t s progress ensures that the simulation
program has the liveness property. In the execution of a dis-
tributed simulation, it must be ensured that the virtual time
progresses (has the liveness property) in a way that avoids
violating the causality relations of the program, providing
the necessary safety conditions.

The global time built by a synchronizer or by a distrib-
uted simulation runtime environment drives the underly-
ing program and should not be confused with the logical
time. It belongs t o the underlying program semantics and
is nothing but the virtual5 counterpart of the physical time
offered by the environment and used in real-time applica-
tions. On the other hand, logical time (whether linear, vec-
tor, or matrix) orders events according t o their causal
precedence t o ensure properties such as liveness, consis-
tency, and fairness. Such logical time is just one means t o

ness; t h i s time belongs neither ;o the mutual exclusion
semantics nor the program invoking mutual exclusion. In
fact, other means can ensure properties such as liveness.
For example, Chandy and Misra's mutual exclusion algo-
rithm7 employs a dynamic, directed, acyclic graph instead
of clocks t o ensure liveness.

References
1. B. Awerbuch, "Complexity of Network Synchronization,"

1. ACM, Vol. 32, No. 4, 1985, pp. 804-823.
2. M. Raynal and J.M. Helary, Synchronization and Control of

Distributed Systems and Programs, John Wiley & Sons, New
York, 1990. 124 pp.

3. J. Misra, "Distributed Discrete Event Simulation," ACM Com-
puting Surveys, Vol. 18, No. 1, 1986, pp. 39-65.

4. R. Righter and J.C. Walrand, "Distributed Simulation of Dis-
crete Event Systems," Proc. /E€€, Jan. 1988, pp. 99-1 13.

5. D. Jefferson, "Virtual Time," ACM Trans. Programming Lan-
guages andSystems, Vol. 7, No. 3, 1985, pp. 404-425.

6. G. Ricart and A.K. Agrawala, "An Optimal Algorithm for
Mutual Exclusion in Computer Networks," Comm. ACM, Vol.
24, No. 1, Jan. 1981. pp. 9-17.

7. K.M. Chandy and J. Misra, "The Drinking Philosophers Prob-
lem," ACM Trans. Programming LanguagesandSystems, Vol.
6, No. 4, 1984, pp. 632-646.

February 1996

I

v-pt, = {(l,O)I v-ptl={(l,l)I
PI b

P2 b

pt,=Ul,O), v_pt,= "_pt3= v-pt,=
v-pt, = {(3,0)1 V-Pt, = {(3,1)1 '0)J(3' {(3,2)} {(3,2), (4,l)) {(3,3)}

p3 -
el-pt, = {(3.0)1

v-pt, = v.pt4 =
V-PQ= {(4,0)1 {(4,0).(5,1)I 1)I

p4 -
el#,= {(4,0),(5,1)1

v-pt,= {(5,0)1 -
p5 -

V-P~,= {(5,1)1 v-pt, = e2& =
el-pt, = {(5,0)1 {(4,1),(5,1)1 {(4,1),(5,1)I

We have presented a general framework of logical clocks
n distributed systems and have discussed three systems of
ogical clocks: scalar, vector, and matrix. These systems
lave been used to solve avariety of problems in distributed
ilgorithm design, debugging distributed programs, check-
Iointing and failure recovery, data consistency in repli-
:ated databases, discarding obsolete information, garbage
:ollection, and termination detection.

In scalar clocks, the clock at a process is represented by
in integer. The message and computation overheads are
;mall, but the power of scalar clocks is limited-they are
iot strongly consistent. In vector clocks, the clock at a
irocess is represented by a vector of integers. Thus, the
nessage and computation overheads are likely to be high;
iowever, vector clocks possess a powerful property--the
somorphism that exists between the set of partially
xdered events in a distributed computation and theirvec-
:or timestamps. This useful, interesting property of vector
:locks finds applications in several problem domains. In
natrix clocks, the clock at a process is represented by a
natrix of integers. Thus, the message and computation
Iverheads are high; however, matrix clocks are quite pow-
2rful. Besides containing information about the direct
iependencies, a matrix clock contains information about
:he latest direct dependencies of those dependencies, This
information can be useful in applications such as distrib-
uted garbage collection. Thus, the power of systems of
:locks increases in the order of scalar, vector, and matrix,
but so do the complexityand overheads.

We discussed three efficient implementations ofvector
clocks; similar techniques can be used to efficientlyimple-
ment matrix clocks. I

Acknowledgments

for their comments on a previous version of this article.
We are deeply grateful to the four anonymous referees

References
1. D.L. Mills, “On the Accuracy and Stability of Clocks Synchro-

nized by NetworkTime Protocolin the Internet System,”ACM
Computer Comm. Rev., Vol. 20, No. 1, Jan. 1990, pp. 65-75.

2. L. Lamport, “Time, Clocks, and the Ordering of Events in a
Distributed System,” Comm. ACM, Vol. 21, No. 7, July 1978,

3. C. Fidge, “Logical Time in Distributed Computing Systems,”
Computer, Vol. 24, No. 8, Aug. 1991, pp. 28-33.

4. F. Mattern, ‘Virtual Time and Global States of Distributed
Systems,” Proc. Parallel and Distributed Algorithms Conf.,
North-Holland, Amsterdam, 1988, pp. 215-226.

5. F. Schmuck, The Use ofEfficient Broadcast inhynchronous
Distributed System, doctoral dissertation, Tech. ReportTR88-
928, Dept. Computer Science, Cornell Univ., Irhaca, New
York, 1988,124 pp.

6. B. Charron-Bost, “Concerning the Size of Logical Clocks in
Distributed Systems,”In~ormationProcessingLetters, Vol. 39,

7. M.J. Fischer and A. Michael, ‘Y5acrificing Serializability to
Attain High Availability of Data in an Unreliable Network,”
Proc. ACMSymp. Principles Database Systems, ACM Press, New
York, 1982, pp. 70-75. ~-

pp. 558-564.

July 1991, pp. 11-16.

Computer

8. G.T.J. Wuu and A.J. Bernstein, “Efficient Solutions to the
Replicated Log and Dictionary Problems,” Proc. 3rd ACM
Symp. PrinciplesDistributed Computing, (PODC), ACM Press,
New York, 1984, pp. 233-242.

9. S.K. Sarin and L. Lynch, “Discarding Obsolete Information in
a Replicated Data Base System,” IEEE Trans. Software Eng.,
Vol. SE, No. 13.1, Jan. 1987, pp. 39-46.

10. M. Singhal and A. Kshemkalyani, “An Efficient Implementa-
tion of Vector Clocks,”lnformation ProcessingLetters, Vol. 43,
Aug. 1992, pp. 47-52.

11. J. Fowler and W. Zwaenepoel, “Causal Distributed Break-
points,” Proc. 10th Int’l Conf Distributed Computing Systems,

12. C. Jard and G-C. Jourdan, “Dependency Tracking and Filter-
ing in Distributed Computations,” in BriefAnnouncements
ACMSymp. PrinciplesDistributed Computing, ACM Press, New
York, 1994; also Tech. Report No. 851, IRISA, Beaulieu,
France, 1994.

1990, pp. 134.141.

Illichel Raynal is a professor of computer science a t the
University of Rennes, France. His research interests are dis-
tributed algorithms, operating systems, protocols and par-
allelism. He received the Doctorat dEta t en informatique in
1981 f r o m Rennes University. He has written seven books
devoted to distributed co-mputing systems, including Dis-
tributed Computations and Networks (MITPress, 1988) and
Synchronization and Control of Distributed Programs
(Wiley & Sons, 1990). He chaired the 9 t h International
Workshop o n Distributed Algorithms (WDAG9) in France.
He is currently involved in European Esprit projects devoted
to the design offault-tolerant distributed systems.

Miikesh Singhal is an associate professor of computer and
informationscience a t Ohio State University, Columbus. His
current research interests include distributed systems, oper-
ating system, mobile computing, and performance model-
ing. He received a B.Eng. in electronics and communication
engneeringfrom the University ofRoorkee, Roorkee, India,
in 1980 and a PhD in computer science f r o m the University
of Maryland, College Park, i n 1986. He coauthored
Advanced Concepts in Operating Systems (McGraw-Hill,
1994). He is a n editor of the IEEE Computer Society Press.

Readers can contact Raynal a t IRlSA, Campus de Beaulieu,
35042 Rennes-Ckdex, France, e-mail raynal@irisa.fi. Sing-
ha1 can be reached a t the Dept. of Computer and Informa-
tion Science, Ohio State Universiq, Columbus, OH 43210,
e-mail singhal@cis.ohio-state. edu.

Doris Carver, Computer’s Software Technologies area editor,
coordinated the review of this article and recommended it for
publication. Her e-mail address is carver@bit.csc.lsu.edu

mailto:carver@bit.csc.lsu.edu

