
A. Birrell, G. Nelson, S. Owicki, E.

Wobber, DEC SRC

SOSP 1994

Network Objects

EECS 345 Distributed Systems

Northwestern University

Context and motivation

A lot of work on distributed object systems Argus,

Eden, Emerald, SOS, …

Unclear what‟s important and what‟s not

Goals

– A new data point – an implementation of essential features

• Just those features valuable to all distributed apps

– A network object system implemented in Modula-3

• It‟s design rational and implementation details

Why do you care?

– Most of the basic ideas behind Java RMI

– A great design rational and implementation description

2

EECS 345 Distributed Systems

Northwestern University

Basic concepts

A Modula-3 object – a reference to data record +

method suite

– Method suite – a record of procedures that accept the object

as first parameter

– Includes a typecode that can be used to determine its type

dynamically

New object type can be defined as subtype of an

existing one

– New object has all methods of the original (single inheritance)

– It can provide additional methods

– … and new implementations of existing ones (overriding)

3

EECS 345 Distributed Systems

Northwestern University

Basic concepts

Network object – one that can be invoked by other

programs

– Reference in client program points to a surrogate object

whose methods perform RPC to the owner of it

4

Surrogate

object

T – Network

object type

TImpl – Type

of the real

object located

in the owner

TSrg - Surrogate

object type

EECS 345 Distributed Systems

Northwestern University

Basic concepts

Third party transfer

– If A has a ref to a network object owned by B,

– A can pass the ref to C

– C can then call the methods of the object – third party transfer

When a client first receives a ref to a given network

object, an appropriate surrogate is created by the

unmarshalling code
– The type of the surrogate must be determined

– narrowest surrogate rule: surrogate will have the most specific type

of all surrogate types that are

• Consistent with the type of the object in the owner and

• For which stubs are available at both ends

5

EECS 345 Distributed Systems

Northwestern University

Example – a trivial file service

6

INTERFACE FS;

IMPORT NetObj;

TYPE

File = NetObj.T OBJECT METHODS

getChar(): CHAR;

eof(): BOOLEAN;

END;

Server = NetObj.T OBJECT METHODS

open(name: TEXT): File

END

END FS.

These types are pure, i.e.

there are no data fields

associated with them (they

should go between OBJECT

& METHODS)

Two networked objects – File and

Server; all network objects are

subtype of NetObj.T

The I/F defines two network object types, one for opening files

and one for reading them.

If pointed to the interface FS, the stub generator will produce

a module containing client & server stub for both types.

Interface

EECS 345 Distributed Systems

Northwestern University

Example

7

MODULE Server EXPORTS Main;

IMPORT NetObj, FS, Time;

TYPE

File = FS.File OBJECT

<buffers, etc>

OVERRIDES

getChar := GetChar;

eof := EOF;

END;

Svr = FS.Server OBJECT

<directory cache, etc.>

OVERRIDES

open := Open

END;

<Code for GetChar, Eof, and Open>

BEGIN

NetObj.Export(NEW(Svr), “FS1”);

<Pause indefinitely>

END Server.

Exports net object Svr – it

places a reference to it in a

table under the name FS1;

the table is contained in an

agent process running in the

same mach as the server.

Implementation

EECS 345 Distributed Systems

Northwestern University

Example

8

MODULE Client EXPORTS Main;

IMPORT NetObj, FS, IO;

VAR

s: FS.Server:=

NetObj.Import(“FS1”,

NetObj.LocateHost(“server”));

f := s.open(“/usr/dict/words”);

BEGIN

WHILE NOT f.eof() DO

IO.PutChar(f.getChar())

END

END Client.

(Import) Returns net object

stored in the agent‟s table

under the name FS1 (i.e. „Svr‟)

(LocateHost) Returns handle on

the agent process running on

the machine named “server”

The net obj s is exported by

name but f is anonymous, i.e.

not present in any agent table

Client

EECS 345 Distributed Systems

Northwestern University

Implementation details - assumptions

Single inheritance & some basic primitives wrt objects (testing its

type at runtime, find the code for the direct supertype given the

code for the type, …)

Threads

Some form of inter-address space (AS) communication

Garbage collection

A method for communicating object typecodes between AS

– Typecodes are unique within an AS, M3 compiler generates a

fingerprint for every object type (like a hash of the object structure)

– Every AS contains two tables mapping typecodes to fingerprints

– typecode→fingerprint before sending, fingerprint → typecode upon

reception

OO buffered streams

– Object type for which the method for filling/flushing the buffer can be

overridden differently in different subtypes (readers & writers in M3)

9

EECS 345 Distributed Systems

Northwestern University

Implementation – Garbage collection

Network-wide reference garbage collection (gc)

For each exported object, runtime records set of clients

containing surrogates (dirty set)

– As long as set is not empty, it also retains a pointer to protect the

object from local GC

– Keeping list of clients allows detection of clients that exit/crash

– When surrogate is created, it registers a procedure with the local GC

to be called for cleanup (with a RPC call to owner)

Can‟t GC cycles, that‟s a programmers problem

There‟s a problem with passing references – if A sends B a

reference to an object owned by C, A may call clean before B

calls dirty – object‟s gone

– Not a problem if ref is passed as an argument in a RPC since calling

thread retains a reference to the object

– … but a real one if the object is sent as a result – request an ACK (a

simple solution at the cost of an additional message)

10

EECS 345 Distributed Systems

Northwestern University

Implementation – basic representation

Wire representation of a netobj: (sp, i)

– sp: SpaceID – number that ID the owner of the object

– i: ObjID – number that ID object among others by same owner

Each AS keeps an object table with

– All its surrogates

– All its exported netobjs

The concrete representation of a netobj includes

– Wire representation

– Object state – surrogate, exported, unexported

– If state = surrogate, location to generate connections to owner‟s AS

– If state = exported, dispatcher

Dispatcher – dispatcher procedure for the object

– Unmarshals a method number/index and argument from a

connection c, calls the appropriate method of obj, and marshals and

sends the results over c

11

EECS 345 Distributed Systems

Northwestern University

Implementation – remote invocation

The stub-generated surrogate declaration for

FS.Server with a single method open

12

SrgSvr = FS.Server OBJECT

OVERRIDES open:=SrgOpen END;

SrgOpen(ob: SrgSvr; n: TEXT): FS.File =

VAR

c:=ob.loc.new();

res: FS.file;

BEGIN

MarshalNetObj(ob,c);

MarshalInt(0,c);

MarshalText(n,c);

Flush(c.wr);

res:=UnmarshalNetObj(c);

ob.loc.free(c);

RETURN res

END;

Identifies the method

open on the wire

Generate a connection

to the owner AS

Writes to the connection c the wire

representation of the reference obj. If the

object has not been exported before, create

its wire representation, and insert it in the

object table with the associated dispatcher

EECS 345 Distributed Systems

Northwestern University

Implementation – remote invocation

Meanwhile, on the server side …

13

VAR

ob:= UnmarshalNetObj(c);

BEGIN

ob.disp(c,ob)

END;

The thread forked by the

transport to service a connection

c, runs something like this

SvrDisp(c: Connection; o: FS.Server) =

VAR

methID:= UnmarshalInt(c);

BEGIN

IF methID = 0 THEN

VAR

n:= UnmarshalText(c);

res: FS.File;

BEGIN

res := o.open(n);

MarshalNetObj(res,c);

Flush(c.wr);

END

ELSE

<error, non-existent method>

END

END

The dispatcher procedure

is typically written by the

stub generator

EECS 345 Distributed Systems

Northwestern University

Implementation – remote invocation

14

UnmarshalNetOb(c: Connection): NetObj.T =

VAR

sp := UnmarshalInt(c);

i := UnmarshalInt(c);

wrep := (sp,i);

BEGIN

IF sp = -1 THEN RETURN NILL

ELSIF objtbl[wrep] # NIL THEN

RETURN objtbl[wrep]

ELSE

RETURN NewSurrogate(sp, i, c)

END

END;
NewSurrogte(sp: SpaceID, i: ObjID, c:

Connection): NetObj.T =

VAR

loc := Locate(sp,conn);

tc := ChooseTypeCode(loc,i);

res := Allocate(tc);

BEGIN

res.wr := (sp,i);

res.state := Surrogate;

objtbl[(sp,i)] := res;

RETURN res

END

Returns a location that

generates connections to sp

Allocates an object

with type code tc

EECS 345 Distributed Systems

Northwestern University

Implementation – remote invocation

15

ChooseTypeCode(loc, i) =

VAR fp: SEQ[Fingerprint]; BEGIN

VAR c:= loc.new(); BEGIN

fp:=RPC(c,Dirty(I,SelfID());

loc.free(c);

END

BEGIN

FOR j:= 0 TO LAST(fp) DO

IF FPToTC(fp[j]) IN domain(stubs)

THEN RETURN

stubs(FPToTC(fp[j])).srgType

END

END

END

Return the code for

the calling AS‟s

surrogate type for the

object with ID i and

whose owner is the

AS to which loc

generates

connections

It also calls dirty

EECS 345 Distributed Systems

Northwestern University

Implementation – remote invocation

16

Dirty(i: ObjID, sp: SpaceID): SEQ[Fingerprint] =

VAR

tc:= TYPE(objtbl[(SelfID(),i)]);

res:= SEQ[Fingerprint]:= empty;

BEGIN

< add sp to i’s dirty set>

WHILE NOT tc IN domain(stubs) DO

tc:= Supertype(tc);

END;

LOOP

res.addhi(TCToFP(tc));

IF tc = TYPECODE(NetObj.T) THEN

EXIT

END;

tc := Supertype(tc)

END;

RETURN res

END

Converts between equivalent

typecodes and fingerprints

Extends sequence res

with new element

„argument‟

EECS 345 Distributed Systems

Northwestern University

Light evaluation

Implemented in 1 year by 4 people

Size - ~10k SLOC

– Runtime system 4k SLOC

– Stub generator 3k SLOC

– TCP transport 1,5K SLOC

– Pickle package 750 SLOC

– Network object agent 100 SLOC

Numbers

17

Null call 3310 usecs/call 1600 usecs for a C-based TCP echo from user to user space, plus

marshalling/unmarshalling, mas two user space context switches.

Ten integer call 3435 usecs/call Every integer is +12usec

Same object argument 3895 usecs/call Doesn‟t lead to a dirty call

Same object return 4290 usecs/call Extra call for „return‟ is due to the ack needed

New object argument 9148 usecs/call This requires a dirty call

New object return 10253 usecs/call Same but also an ack

Reader test 2824 KB/sec Throughput of a raw TCP stream using C ~3400 KB/sec, overhead

comes from M3 user space thread switch

EECS 345 Distributed Systems

Northwestern University

Experience

System was under use by the group, by paper

submission they had built

– packagetool – a tool that allows software packages to be

checked in and out of a repository

– siphon - used to link repositories that are too far apart to be

served by the same distributed file system

Use of networked objects resulted on

– Simpler interfaces

• Transfer of objects simplifies implementation of siphon

– Smaller, simpler implementations

• Using a link structured of directory elements with one call rather than a

set of RPC calls

– More flexible implementations

• Easy to plug a different transport

18

