Network Objects

A. Birrell, G. Nelson, S. Owicki, E.
Wobber, DEC SRC
SOSP 1994

Context and motivation

» A lot of work on distributed object systems Argus,
Eden, Emerald, SOS, ...

* Unclear what’s important and what’s not

» Goals

— A new data point — an implementation of essential features
« Just those features valuable to all distributed apps

— A network object system implemented in Modula-3
 |t's design rational and implementation details

» Why do you care?
— Most of the basic ideas behind Java RMI
— A great design rational and implementation description

EECS 345 Distributed Systems
Northwestern University

Basic concepts

» A Modula-3 object — a reference to data record +
method suite

— Method suite — a record of procedures that accept the object
as first parameter

— Includes a typecode that can be used to determine its type
dynamically
* New object type can be defined as subtype of an
existing one
— New object has all methods of the original (single inheritance)
— It can provide additional methods
— ... and new implementations of existing ones (overriding)

EECS 345 Distributed Systems
Northwestern University

Basic concepts

» Network object — one that can be invoked by other
programs

— Reference in client program points to a surrogate object
whose methods perform RPC to the owner of it

Client machine Server machine

ject
Surrogate , ot DB
. Client Server
object \ — I State
Same
Client \ interche D I:' D Method
invokes 1 a8 Olgjeot
a method \ Skelet .-y
invilfezn S I . Interface
Proxy same frethod Skeleton
T — Network at object A
. li
object type Client OS Server 08

/ \ e J
Network

Marshalled invocation

TSI’g _ Surrogate TImpI - Type is passed across network
object type of Fhe real

object located

in the owner

EECS 345 Distributed Systems
Northwestern University

Basic concepts

» Third party transfer
— If A has a ref to a network object owned by B,
— A can pass the refto C
— C can then call the methods of the object — third party transfer

* When a client first receives a ref to a given network
object, an appropriate surrogate is created by the

unmarshalling code
— The type of the surrogate must be determined

— narrowest surrogate rule: surrogate will have the most specific type
of all surrogate types that are
« Consistent with the type of the object in the owner and
» For which stubs are available at both ends

EECS 345 Distributed Systems
Northwestern University

Example — a trivial file service

Interface
Two networked objects — File and
Server; all network objects are
INTERFACE FS; subtype of NetODbj.T

IMPORT NetObj;
TYPE
File = NetObj.T OBJECT METHODS
getChar () : CHAR;
eof () : BOOLEAN;
END ;

Server = NetObj.T OBJECT METHODS

open (name: TEXT): File
END
END FS.

These types are pure, i.e.
there are no data fields
associated with them (they
should go between OBJECT
& METHODYS)

The I/F defines two network object types, one for opening files
and one for reading them.

If pointed to the interface FS, the stub generator will produce
a module containing client & server stub for both types.

EECS 345 Distributed Systems

Northwestern University

Example

Implementation

MODULE Server EXPORTS Main;
IMPORT NetObj, FS, Time;
TYPE
File = FS.File OBJECT
<buffers, etc>
OVERRIDES
getChar := GetChar;
eof := EOF;
END;
Svr = FS.Server OBJECT

<directory cache, etc.> Exports net object Svr — it

OVERRIDES places a reference toitin a

open := Open table under the name FS1;

END; the table is contained in an
<Code for GetChar, Eof, and Open> agent process running in the

same mach as the server.

BEGIN
NetObj.Export (NEW(Svr), “FS1”);
<Pause indefinitely>

END Server.

EECS 345 Distributed Systems
Northwestern University

Example

Client

MODULE Client EXPORTS Main;

IMPORT NetObj, FS, IO; (LocateHost) Returns handle on

the agent process running on
VAR the machine named “server”

s: FS.Server:=
NetObj.Import (“FS1”,
NetObj.LocateHost (“server”)) ;

f := s.open(“/usr/dict/words”) ; _
BEGIN (Import) Returns net object
WHILE NOT f.eof () DO stored in the agent’s table
I0.PutChar (f.getChar()) under the name FS1 (i.e. ‘Svr’)
END
END Client.

The net obj s is exported by
name but f is anonymous, i.e.
not present in any agent table

EECS 345 Distributed Systems
Northwestern University

Implementation details - assumptions

» Single inheritance & some basic primitives wrt objects (testing its
type at runtime, find the code for the direct supertype given the
code for the type, ...)

» Threads
* Some form of inter-address space (AS) communication
» Garbage collection

* A method for communicating object typecodes between AS

— Typecodes are unique within an AS, M3 compiler generates a
fingerprint for every object type (like a hash of the object structure)

— Every AS contains two tables mapping typecodes to fingerprints

— typecode—fingerprint before sending, fingerprint — typecode upon
reception

* OO huffered streams

— Obiject type for which the method for filling/flushing the buffer can be
overridden differently in different subtypes (readers & writers in M3)

EECS 345 Distributed Systems
Northwestern University

Implementation — Garbage collection

» Network-wide reference garbage collection (gc)
* For each exported object, runtime records set of clients
containing surrogates (dirty set)

— As long as set is not empty, it also retains a pointer to protect the
object from local GC

— Keeping list of clients allows detection of clients that exit/crash
— When surrogate is created, it registers a procedure with the local GC
to be called for cleanup (with a RPC call to owner)
» Can’t GC cycles, that’'s a programmers problem

» There’s a problem with passing references — if A sends B a
reference to an object owned by C, A may call clean before B
calls dirty — object’s gone

— Not a problem if ref is passed as an argument in a RPC since calling
thread retains a reference to the object

— ... but a real one if the object is sent as a result — request an ACK (a
simple solution at the cost of an additional message)

EECS 345 Distributed Systems
Northwestern University

Implementation — basic representation

» Wire representation of a netobj: (sp, i)
— sp: SpacelD — number that ID the owner of the object
— I: ObjID — number that ID object among others by same owner
» Each AS keeps an object table with
— All its surrogates
— All its exported netobjs
» The concrete representation of a netobj includes
— Wire representation
— Object state — surrogate, exported, unexported
— |If state = surrogate, location to generate connections to owner’'s AS
— |If state = exported, dispatcher
» Dispatcher — dispatcher procedure for the object

— Unmarshals a method number/index and argument from a

connection c, calls the appropriate method of obj, and marshals and
sends the results over c

EECS 345 Distributed Systems
Northwestern University

Implementation — remote invocation

» The stub-generated surrogate declaration for
FS.Server with a single method open

SrgSvr = FS.Server OBJECT
OVERRIDES open:=SrgOpen END;
SrgOpen (ob: SrgSvr; n: T :
VAR
c:=ob.loc.new() ;
res: FS.file;
BEGIN
MarshalNetOb4 (ob, c) ;
MarshalInt(0,c);
MarshalText (n,c) ;
Flush(c.wr) ;

Generate a connection
to the owner AS

Identifies the method
open on the wire

Writes to the connection ¢ the wire
representation of the reference obj. If the

res :=UnmarshalNetObj (c) ; object has not been exported before, create

ob.loc.free (c) ; its wire representation, and insert it in the

RETURN res object table with the associated dispatcher
END;

EECS 345 Distributed Systems
Northwestern University

Implementation — remote invocation

» Meanwhile, on the server side ...
The thread forked by the

VAR _ transport to service a connection
ob:= UnmarshalNetObj(c) ; ¢, runs something like this
BEGIN
ob.disp (c,ob)
END ;

SvrDisp(c: Connection; o: FS.Server) =

VAR
methID:= UnmarshallInt(c) ;
BEGIN
IF methID = 0 THEN
VAR
n:= UnmarshalText (c) ;)
res: FS.File: The dispatcher procedure
BEGIN is typically written by the
res := o.open(n); stub generator

MarshalNetObj (res,c) ;
Flush(c.wr) ;
END
ELSE
<error, non-existent method>
END
END

EECS 345 Distributed Systems
Northwestern University

Implementation — remote invocation

UnmarshalNetOb (c: Connection): NetObj.T =

VAR
sp := UnmarshalInt(c);
i := UnmarshallInt(c);
wrep := (sp,i);
BEGIN
IF sp = -1 THEN RETURN NILL

ELSIF objtbl[wrep] # NIL THEN
RETURN objtbl [wrep]
ELSE
RETURN NewSurrogate(sp, i, c)
END

END;) .
NewSurrogte (sp: SpaceID, i: ObjID, c:

Connection) : NetObj.T = Returns a location that

VAR generates connections to sp
loc := Locate(sp,conn);
tc := ChooseTypeCode (loc,1i) ;
res := Allocate(tc);
BEGIN Allocates an object
res.wr := (sp,i); with type code tc
res.state := Surrogate;
objtbl[(sp,i)] := res;
RETURN res
END

EECS 345 Distributed Systems
Northwestern University

Implementation — remote invocation

Return the code for
the calling AS’s

surrogate type for the \
object with ID i and
whose owner is the

. ChooseTypeCode (loc, i) =
AS to which loc VAR fp: SEQ[Fingerprint]; BEGIN

generates VAR c:= loc.new(); BEGIN
connections fp:=RPC (c,Dirty (I,SelfID()) ;
It also calls dirty loc.free(c) ;
END
BEGIN

FOR j:= 0 TO LAST (fp) DO
IF FPToTC(fp[j]) IN domain (stubs)
THEN RETURN
stubs (FPToTC (fp[j])) . srgType
END
END
END

EECS 345 Distributed Systems
Northwestern University

Implementation — remote invocation

Dirty(i: ObjID, sp: SpacelD): SEQ[Fingerprint] =
VAR

tc:= TYPE (objtbl|[(SelfID() ,1i)])

res:= SEQ[Fingerprint] := empty;
BEGIN

< add sp to i’s dirty set>

WHILE NOT tc IN domain (stubs) DO

Extends sequence res tc:= Supertype(tc);
with new element END; Converts between equivalent
‘argument’ Lo typecodes and fingerprints
res.addhi (TCToFP(tc)) ;
IF tc = TYPECODE (NetObj.T) THEN
EXIT
END;
tc := Supertype (tc)
END;
RETURN res
END

EECS 345 Distributed Systems
Northwestern University

Light evaluation

» Implemented in 1 year by 4 people

» Size -~10k SLOC
— Runtime system 4k SLOC
— Stub generator 3k SLOC
— TCP transport 1,5K SLOC
— Pickle package 750 SLOC
— Network object agent 100 SLOC

* Numbers

Null call 3310 usecs/call 1600 usecs for a C-based TCP echo from user to user space, plus
marshalling/unmarshalling, mas two user space context switches.

Ten integer call 3435 usecs/call Every integer is +12usec

Same object argument | 3895 usecs/call Doesn’t lead to a dirty call

Same object return 4290 usecs/call Extra call for ‘return’ is due to the ack needed

New object argument 9148 usecs/call This requires a dirty call

New object return 10253 usecs/call | Same but also an ack

Reader test 2824 KB/sec Throughput of a raw TCP stream using C ~3400 KB/sec, overhead
comes from M3 user space thread switch

EECS 345 Distributed Systems
Northwestern University

Experience

* System was under use by the group, by paper
submission they had built

— packagetool — a tool that allows software packages to be
checked in and out of a repository

— siphon - used to link repositories that are too far apart to be
served by the same distributed file system

» Use of networked objects resulted on

— Simpler interfaces
« Transfer of objects simplifies implementation of siphon

— Smaller, simpler implementations

» Using a link structured of directory elements with one call rather than a
set of RPC calls

— More flexible implementations
« Easy to plug a different transport

EECS 345 Distributed Systems
Northwestern University

