
Paper By:
Michael Kaminsky
George Savvides
David Mazières
M. Frans Kaashoek

Presentation by:
Rahul Potharaju
EECS 345

Centralized Control

Centralized Authentication

Kerberos

Based on shared-secret
cryptography

Creating accounts
impossible without
involving a Kerberos
administrator

AFS combined
with Kerberos

Cross-Realm
authentication that
allows remote users

Every file server must be
enumerated on client
systems

Certificate Based Systems

SSL

Relies heavily on
Certification Authorities

Certification process is
very similar

Taos

Global naming and file
access

CAs map a public key to
a name

Kerberos

• Was developed at
M.I.T. and is based on
the Needham-
Schroeder
authentication protocol.

• It is a security system
that allows clients in
setting up a secure
channel with any server
that is part of a
distributed system.

• Security Is based on
shared secret keys.

• Two components 
Authentication Server
and Ticket Granting
Service

• Hinder deployment
• Complicate cross-administrative realm collaboration
• Create single points of failure
• Put every one at the mercy of the authority

• Certificates allow general forms of delegation, but
often require more infrastructure than is necessary to
support a network file system

• After framing the SFS, it was extended to validate the functions of the authentication
server. This was achieved by making the SFS compatible with ACLs

• The ACLs for the files are stored in the first 512 bytes. Though there is a performance
overhead, it helps in demonstrating the usefulness of the authentication server.

Creating a personal group on the authentication server:

$ sfskey group –C charles.cwpeople

Adding members to a group:

$sfskey group\
-m +u=james\
-m +u=liz@bu.edu,gnze6...\
-m +g=students@mit.edu,w7abn9p...\
-m +p=anb726muxau6phtk3zu3nq4n463mwn9a\
charles.cwpeople

Local User

Remote user maintained at bu.edu

Students at mit.edu

Hash of a user who does
not belong to the
organization Group Name

New Group Name

Creating an Owner:

$ sfskey group\
-o +u=george@sun.com, heq38...\

charles.cwpeople

Constructing an ACL and placing it on the directory:

$cat myacl.txt
ACLBEGIN
user: charles:rwlida:
group: charles.cwpeople:rl:
ACLEND
$sfsacl –s myacl.txt /courseware

Name of the new owner

Local User

Begin Statement

End Statement

From user onto group

Directory Name

• Secure, global, decentralized file system permitting easy cross-administrative
realm collaboration

• Uses self-certifying hostnames –a combination of the server‘s DNS name and a
hash of its public key (calculated with SHA-1) to other SFS servers

• Provides a global namespace over which no authority has control

• Authentication server provides a generic user authentication service

• Can scale to groups with tens of thousands of members

Guarantees provided by SFS:

• Confidentiality
• An attacker can sniff as much traffic as he
wants – he’ll end up doing traffic analysis!

• Integrity
• An attacker an insert/delete etc. but at
the max can cause a DoS attack

• Is this good?

• Server Authenticity
• When the client initiates the connection,
the server must first prove that it knows the
private key that pairs with the public key in
the self-certifying hostname.

RPC Calls

SFS Client

SFS Client

SFS Client

SFS Agent

SFS Agent

SFS Agent

ACL
Enabled File

Server

Local
Authentication

Server

Sign an
authentication
request

Verifies credentials
or contacts remote
server for
verification

Remote
Authentication

Server

Secure Channel
Does not require
further authentication

Two main functions of Authentication Servers:
1. Provides a generic user authentication

service to other SFS Servers
2. Provides an interface to for users to manage

the authentication name space Named using self-certifying hostnames

LOGIN
QUERY
UPDATE

RPC Interface

Authentication Server Interface User Records

User Name
ID
GID
Version

Public Key
Privileges
SRP Information
Audit String

Analogous
to UNIX

Indicates number
of times updated

For users who want to
use the Secure Remote
Password protocol

Who last updated this record?

Naming Users and Groups

Group Name
ID
Version

Owners
Members
Audit String

ASCII armored SHA-1 hashes

Group Records

p = bkfce6jdbmdbzfbct36qgvmpfwzs8exu
u = alice
u = bob@cs.cmu.edu, fr2eisz3fifttrtvawhnygzk5k5jidiv
g = alice.friends
g = faculty@stanford.edu, 7yxnw38ths99hfpqnibfbdv3wqxqj8ap

• Self-certifying hostnames delegates
trust to the remote authentication
server.
• Important because it allows the
remote group‘s owners to maintain
the group‘s membership lists, but this
implies that the local server must
trust those owners.

Resolving Group Membership

g1

u1 p1

p2 p3

g3

p4

u2

g2

g4

u3

p5

Level 0

Level 1

Level 2

Level 3

Membership Graph

group

user

Corresponding
public key

p2 “belongs” to user u1
u1 “belongs” to group g1
G3 “belongs” to group g1 and g2

How to read the graph?

All is good… But its like ________________…
To address this problem, the authentication
server constructs a complementary graph to
construct the membership graph

Resolving Group Membership Containment Graph

g1

u1 p1

p2 p3

g3

p4

u2

g2

g4

u3

p5

Level 0

Level 1

Level 2

Level 3

group

user

Corresponding
public key

g1 “contains” u1
u1 “has” p2 as his public key
g1 “contains” another group g3

How to read the graph?

p2 “belongs” to user u1
u1 “belongs” to group g1
G3 “belongs” to group g1 and g2

Resolving Group Membership

Challenges in Constructing the Containment Graph:

• Groups can name remote users and groups
• Because the graph could contain remote users and groups a large number of
remote authentication servers have to be contacted

• Traversing the containment graph must be efficient

• Containment graph changes
• The world is dynamic after all!

Authentication Server

User 1 User 2ONE OF THE
USERS IS

BLOCKED!

Resolving Group Membership

So how are the challenges resolved?

• Split the authentication task into two parts:
• Constructing the graphs

• Uses Pre-fetching and caching

• Issue Credentials
• Does this only when a user tries to access the file system

• Cache is stored to disk so that the server can resume state after restarts

Resolving Group Membership Updating the Cache

• Performs a breadth-first search and fetches the records in that order
• Never visits the same node twice (to detect graph cycles)
• Stores the reverse mappings (thereby yielding the membership graph)

Cache Entries

• An adjacency list

g1: u1, p1, g3
g2: g3, u2, g4
u1: p2
g3: p3, p4
g4: u3, g2
u3: p5

Securely contacts remote server but not a problem
because of the self-certifying hostnames i.e.
Local  Remote Authentication is a breeze!

Optimizations

• Store connections to the remote authentication servers
during an update cycle update
• Authentication servers only transfer the changes made
since the last update – Incremental Updates
• Remote authentication servers can transform usernames
into their corresponding public key hashes

Resolving Group Membership

Performance Analysis

• Number of bytes to fetch
• Time required to traverse the containment graph
• Number of public key operations required to update the cache

Depends on whether there was already a copy
cached  If there was, then fetch only the
updated records else full fetch

Sum of the download
latencies at each level – BFS!

Dependent on the number of unique
servers in the containment graph

Freshness

• Freshness vs. Efficiency Winner is Efficiency because delays are not acceptable
• Freshness vs. T(Cache Update) Winner is Freshness because the other is less

Revocation

• All the servers that have a particular record have to be contacted – Most difficult!

Credentials

• Authentication  Process through which the AS issues credentials on behalf of the user

• As we’ve already seen:
• User signs a request with his private key and sends it to the SFS server
• SFS routes this request over to the local AS as part of LOGIN
• Local AS if required will contact Remote AS else it will try to match the user’s public
key with the signature.
• The AS determines the credentials of the user

• Three types of Credentials:
• Unix credentials
• Public Key Credentials
• Group List Credentials

Fields from the /etc/passwd
Gives only to users in the authentication database

Text string containing an ASCII armored SHA-1
hash of the user’s public key

List of groups to which the user belongs to

Credentials

• Once the user has the credentials, the SFS server can make access control decisions
based on those credentials

• The file system needs the ability to map symbolic group names to access rights

• An ACL is a list of entries that specify what access rights the file system should grant
to a particular user or group of users

• Four different types of ACL entries:
• User names
• Group names
• Public key hashes
• Anonymous

To name users with Unix accounts on the local machine

Refers to the SFS groups on the Local AS

ASCII armored SHA-1 hashes used to match against Public
Key credentials

Permission Effect on files Effect on directories

r Read the file No effect

w Write the file No effect

l No effect Change to directory and list files

i No effect Insert new files/dirs into the directory

d No effect Delete files/dirs from the directory

A Modify the file’s ACL Modify the directory’s ACL

Access Rights

No negative permissions unlike AFS!
Once an ACL entry grants access to a user, another entry cannot revoke it

Authentication Server

• To improve scalability, the server has a Berkeley DB backend
• Berkeley DB is also used to store the authentication server‘s cache which allows it
to efficiently store and query groups with thousands of users.

Authentication Server

• Files are stored on the server‘s disk using NFSv3. This offers portability to any OS
that supports this file system
• File ACLs are stored in the first 512 bytes of the file and directory ACLs in a special
file in the directory called .SFSACL
• Use of a text-based format for the ACLs
• Permissions

• When the server receives a request, it retrieves the necessary ACLs and
decides whether to permit the request ACL based on his credentials

• Caching
• The server caches ACLs to avoid issuing extra NFS requests
• The server caches the permissions granted to a user for a particular

Authentication Server

• The number of bytes that the authentication server must transfer to update its
cache depends on the number of remote records that it needs to fetch

• Group records are fetched using a QUERY RPC

• They limit the number of owners and groups returned  Some queries may
require two or more Query RPC calls

• Connecting to the remote authentication server requires two RPCs

• Because the implementation caches secure channels, only one channel is
established during an update cycle  Save one RPC per query

• They ran two experiments…

Local AS fetched
the entire group
because it didn’t
have anything in
its cache

Local AS had a
cached copy

Two
Experiments

Authentication Server

• Number of bytes transferred scales
linearly with group size
• Total Groups transferred = 1001
--- Each group consisting of increasing
number of users
• Users were represented using
hashes of their public keys (34 bytes)
• Group names  16 bytes
• Audit strings  70 bytes
• Owners list  empty

• Number of bytes transferred scales
linearly with number of changes in the
group since last update
• Varied the number of changes from
0 to 9990 in steps of 10
• Each change was simple – Add a user
and a (+) sign

Authentication Server

To transfer Q R S M O B

0 users 72 136 40 0 216 208

10000 users 72 136 40 10000 216 408632

0 changes 72 108 40 0 180 180

1000 changes 72 108 40 10000 180 40720

B = Q + R + (M*S) + [M/251]*O = 400 KB

Size of the RPC Request

Size of the reply

Number of users in the groupSize of a single user

RPC Overhead per 250 users

Total bytes transferred

Insignificant from the evaluation
For instance, to transfer 10000
users, the overhead was 8424 bytes
 Just 2% of the total bytes


Result is favorable – Looks
like it can support MIT
Athena group which is
large

ACL-enabled Fi le System

Performance Penalty associated with the ACL mechanism!

Benchmark create, reads, and deletes
1,000 1024 byte files and then flushes
the cache

• Paper makes the reader feel as if they have nothing to hide. Reveals almost
everything in the system

• If there’s a drawback (such as the 512 byte overhead), they address it right away.

• Self certifying hostnames looks like a promising decision

• Too many sections! 

• No graphs 

