
Today

 Introduction

 Secure channel

 Access control

 Security management

Security

EECS 345 Distributed Systems

Northwestern University

Security – dependability revisited

A component provides services to clients. For this, it

may require services from other components, i.e.

depend on them.

– Availability – accessible and usable by authorized entities

– Reliability – continuity of service delivery

– Safety – very low probability of catastrophes

– Confidentiality – no unauthorized disclosure of info

– Integrity – no accidental or malicious alterations of info

In distributed systems, security is the combination of

availability, integrity, and confidentiality. A dependable

distributed system is thus fault tolerant and secure.

2

EECS 345 Distributed Systems

Northwestern University

Security threat

Subject – entity capable of issuing a request for
service as provided by objects

Channel – the carrier of request/replies for service

Object – entity providing service to subjects

Channels and objects are subject to security threats

3

Threat Channel Object

Interruption Preventing message

transfer

DOS

Inspection Reading the content of

transferred messages

Reading the data

contained in an object

Modification Changing message

content

Changing an object’s

encapsulated data

Fabrication Inserting messages Spoofing an object

EECS 345 Distributed Systems

Northwestern University

Security mechanisms

To protect against security threats, we have a number

of security mechanisms at our disposal:

– Encryption: Transform data into something that an attacker

cannot understand (confidentiality). It is also used to check

whether something has been modied (integrity).

– Authentication: Verify the claim that a subject says it is S:

verifying the identity of a subject.

– Authorization: Determining whether a subject is permitted to

make use of certain services.

– Auditing: Trace which subjects accessed what, and in which

way. Useful only if it can help catch an attacker.

Note

– But what policy do mechanisms enforce? What actions do the

entities in a systems are (not) allowed to take? First clarify the

security policies

4

EECS 345 Distributed Systems

Northwestern University

Design issues

Focus of control – what is our focus when talking

about protection: (a) data (e.g. integrity constraints),

(b) invalid operations, (c) unauthorized users

We generally need all three, but each requires

different mechanisms

5

EECS 345 Distributed Systems

Northwestern University

Design issues

Layering of security mechanisms – at which logical

level are we going to implement security mechanisms?

Whether security mechanisms are actually used is

related to the trust a user has in those mechanisms.

No trust →implement your own mechanisms.

6

EECS 345 Distributed Systems

Northwestern University

Design issues

Distribution of security mechanisms

– Trusted Computing Base: What is the set of mechanisms

needed to enforce a policy. The smaller, the better.

– Consistent with this – separate security services from other

type of services and place them on machines according with

needed security (e.g. RISSC, isolate security-critical servers

from users)

Simplicity

– As always, simpler is better but not always possible

– If application is inherently complex, little to do

7

EECS 345 Distributed Systems

Northwestern University

Cryptography

Fundamental to security in distributed systems

– Symmetric system: Use a single key to encrypt & decrypt ;

requires sharing the secret key

– Asymmetric system: Use different keys for encryption &

decryption – private and public

– Hashing system: Only encrypt data (no decryption) & produce

a fixed-length digest; only comparison is possible

Basic idea for applying these techniques

8

EECS 345 Distributed Systems

Northwestern University

Cryptographic functions

Hash functions used in cryptographic systems have a set of

essential properties

– One-way function: It’s computationally infeasible to find the input m

that corresponds to a known output h

– Weak collision resistance: Given a pair (m,h=H(m)), it is

computationally infeasible to find another m* != m such that H(m*) =

H(m)

– Strong collision resistance: Given only H, it is computationally

infeasible to find any two different inputs m and m* such that H(m) =

H(m*)

Similar properties apply to encryption functions and the keys

used, also

– It should be computationally infeasible to find the key K when given

the plaintext m and associated ciphertext C = EK(m)

– Analogous to collision resistance, it is computationally infeasible to

find any two different keys K and K* such that for all m: EK(m) =

EK*(m)

9

EECS 345 Distributed Systems

Northwestern University

Secure channels

Making a distributed system secure

– Authorization – controlling access to resources

– Secure communication between processes

• Authentication – who is on the other side

• Message integrity – messages cannot be tampered with;

authentication and message integrity rely on each other (a

false message from the right person or the right message

from the wrong person)

• Message confidentiality – nor leak away

– … setting up a secure channel

10

EECS 345 Distributed Systems

Northwestern University

Authentication: Secret keys

1. Alice sends ID to Bob

2. Bob sends challenge RB (i.e. a random number) to Alice

3. Alice encrypts RB with shared key KA,B. Now Bob knows he's

talking to Alice

4. Alice send challenge RA to Bob

5. Bob encrypts RA with KA,B. Now Alice knows she's talking to Bob

Trying to improve its performance leads to incorrect protocols (given

room to reflection attacks, for example)

11

EECS 345 Distributed Systems

Northwestern University

Secret keys ‘Reflection attack’

1. Chuck claims he's Alice, and sends challenge RC

2. Bob returns a challenge RB and the encrypted RC

3. Chuck starts a second session, claiming he is Alice, but uses

challenge RB

4. Bob sends back a challenge, plus KA,B(RB)

5. Chuck sends back KA,B(RB) for the first session to prove he is

Alice

12

EECS 345 Distributed Systems

Northwestern University

Authentication: Key Distribution Center

With N subjects, we need to manage N(N - 1)/2 keys,

each subject knowing N -1 keys

Alternative – use a trusted Key Distribution Center

(KDC) that generates keys when necessary

– The KDC shared keys with each host, but no pair of hosts

needs to have a share key as well

For Alice to set a secure channel with Bob
1. Alice contact KDC stating what it wants

2. KDC returns shared key KA,B encrypted with key it shares with Alice …

3. sends Bob a similar message

13

EECS 345 Distributed Systems

Northwestern University

Needham-Schroeder

Need to ensure Bob knows about KA,B before is reached by Alice

Let Alice do the work and pass her a ticket to set up a secure

channel with Bob – the Needham-Schroeder authentication

protocol

Some subtle issues

– RA1 is a nonce, a random # used only once to related msgs (1 & 2)

– Why Bob into the reply? To ensure Alice the channel is being set

with Bob (rather than Chuck, who may intercept msg 1)

– Bob uses the ticket to find the shared key

– By returning RA2-1, Bob shows that not only knows the shared secret

key, but has actually decrypted the challenge

14

EECS 345 Distributed Systems

Northwestern University

Needham-Schroeder improvement

Security flaw – suppose Chuck finds out and old key, he could

replay message 3 and have Bob set up a channel

Need to relate message 1 to message 3 – make the key

dependent on the initial request from Alice

Solution – Alice get an encrypted number from Bob first, and put

that number in the ticket provided by the KDC → Bob now knows

the session key is tied to the original request to talk from Alice

15

EECS 345 Distributed Systems

Northwestern University

Authentication: Public key

1. Alice sends a challenge RA to Bob, encrypted with Bob's public

key K+
B .

2. Bob decrypts the message, generates a secret key KA,B (session

key), proves he's Bob (by sending RA back), and sends a

challenge RB to Alice. Everything’s encrypted with Alice's public

key K+
A .

3. Alice proves she's Alice by sending back the decrypted

challenge, encrypted with generated secret key KA,B

16

EECS 345 Distributed Systems

Northwestern University

Confidentiality

Rather than reusing keys for both authentication and

message integrity and confidentiality

– Expensive authentication keys for session establishment

– Session keys for message integrity & confidentiality

Why?

– Keys wear out – the more you use it, the easier to break

– Danger of replay – using the same key for different

communication sessions, permits old messages to be inserted

in the current session

– Compromised keys – intruder can decrypt old messages

– Temporary keys – some components you may trust once, but

not long-term

• Don't use valuable and expensive keys for all communication, but only

for authentication purposes

• Introduce a “cheap” session key is used only during one single

conversation

17

EECS 345 Distributed Systems

Northwestern University

Digital signatures

Protecting messages integrity often goes beyond the

transfer through a secure channel

– Authentication – receiver can verify the claimed identity of the

sender

– Non-repudiation – sender can’t later deny that he/she sent the

message

– Integrity – message cannot be maliciously altered during, or

after receipt

Solution: Let a sender sign all transmitted messages,

in such a way that (1) the signature can be verified

and (2) message and signature are uniquely

associated

18

EECS 345 Distributed Systems

Northwestern University

Public key signatures

1. Alice encrypts her message m with her private key

2. She then encrypts m’ with Bob's public key, along with the

original message and sends that

3. Bob decrypts the incoming message with his private. We know

no one else has been able to read m, nor m’ during their

transmission.

4. Bob decrypts m’ with Alice’s public key to make sure it comes

form Alice

19

EECS 345 Distributed Systems

Northwestern University

Message digests

Encrypting the whole message maybe costly and is

unnecessary

Separate authentication and secrecy, take a message

digest, and sign that:

Of course, you can still provide confidentiality by

encrypting message with Bob’s public key

20

EECS 345 Distributed Systems

Northwestern University

Secure group communication

How to share secret information between multiple members

Confidential group communication

– Sharing a key among all, too vulnerable to attacks

– Use a separate key for each pair, hard to scale

– Use public-key for communication between pairs

Secure replicated servers

– Client issues a request to a group of replicated servers

– Rely on secret sharing – nobody knows the entire secret, you need

c+1 signatures to create a valid signature for the response

– At most k out of N processes

can produce an incorrect

answer, at most c ≤ k

processes have been

corrupted

21

EECS 345 Distributed Systems

Northwestern University

Access control

Once there’s a secure channel set up, client can issue

requests to be carried out by the server

… but on an object to which the client should have

access rights

Verifying access rights – access control

Authentication and authorization

– Authentication: Verify the claim that a subject says it is S:

verifying the identity of a subject

– Authorization: Determining whether a subject is permitted

certain services from an object

Authorization makes sense only if the requesting

subject has been authenticated

22

EECS 345 Distributed Systems

Northwestern University

Access control matrix

A common approach to model access rights of subjects wrt

objects – access control matrix (ACM)

Maintain an ACM in which entry ACM[S,O] contains the

permissible operations that subject S can perform on object O

ACM is a sparse matrix (many empty entries), to implement it

– (a) Each object O maintains an access control list (ACL): ACM[*,O]

describing the permissible operations per subject (or group of

subjects)

– (b) Each subject S has a capability: ACM[S,*] describing the

permissible operations per object (or category of objects)

23

EECS 345 Distributed Systems

Northwestern University

Protection domains

ACLs or capability lists can be very large. Reduce

information by means of protection domains:

– Set of (object, access rights) pairs

– Each pair is associated with a protection domain

– For each incoming request the reference monitor first looks up

the appropriate protection domain

Common implementation of protection domains:

– Groups: Users belong to a specific group; each group has

associated access rights

– Roles: Don't differentiate between users, but only the roles

they can play. Your role is determined at login time. Role

changes are allowed.

24

EECS 345 Distributed Systems

Northwestern University

Firewalls

When not all parties are playing with the same set of

rules – firewalls

A reference monitor checking on all communication

Two basic flavors

– Packet-filtering gateway – operates as a router, decisions

made based on header info such as origin and destination ip

– Application-level gateway – look at the payload, e.g. discard

emails that are too large

25

EECS 345 Distributed Systems

Northwestern University

Secure mobile code

Mobile code is great for balancing communication and

computation, but

– Hard to ensure nothing happen to the mobile code

– The host can be sure is protected against malicious agents

Rather than protect the client, detect changes

– Read-only state signed by owner and easy to check

– Append-only log that only the owner can deconstruct

– Selective revealing to provide items to specific servers

Protecting the host

– Sandbox model: Remote code is allowed access to only a

pre-defined collection of resources & services (by checking

instructions for illegal memory access and service access)

– Playground model: Same policy, but mechanism is to run

code on separate “unprotected” machine

26

EECS 345 Distributed Systems

Northwestern University

Management – Key establishment

Diffie-Hellman – create secret keys in a safe way

without having to trust a third party (i.e. a KDC):

– Alice and Bob have to agree on two large numbers, n and g.

Both numbers may be public.

– Alice chooses large number x, and keeps it to herself. Bob

does the same, say y.

1. Alice sends (n, g, gx mod n) to Bob

2. Bob sends (gy mod n) to Alice

3. Alice computes KA,B = (gy mod n)x = gxy mod n

4. Bob computes KA,B = (gx mod n)y = gxy mod n

27

EECS 345 Distributed Systems

Northwestern University

Management – Key distribution

If authentication is based on cryptographic protocols, and we

need session keys to establish secure channels, who's

responsible for handing out keys?

Secret keys: Alice and Bob will have to get a shared key. They

can invent their own or trust a KDC.

Public keys: Alice will need Bob's public key to decrypt (signed)

messages from Bob, or to send private messages to Bob. But

she'll have to be sure about actually having Bob's public key. Use

a trusted certification authority (CA) to hand out public keys. A

public key is put in a certificate, signed by a CA.

28

EECS 345 Distributed Systems

Northwestern University

Management – Authorization management

To avoid that each machine needs to know about all

users, use capabilities and attribute certificates to

express the access rights that the holder has

In Amoeba, restricted access rights are encoded in a

capability, along with data for an integrity check to

protect against tampering

Owner gets a owner capability and asks server for a

restricted capability

29

EECS 345 Distributed Systems

Northwestern University

Delegation

A subject sometimes wants to delegate its privileges to

an object O1, to allow that object to request services

from another object O2

– Have the print server to print a file w/o giving it the full copy

Non-solution: Simply hand over your attribute

certificate to a delegate (which may pass it on to the

next one, etc.)

To what extent can the object trust a certificate to have

originated at the initiator of the service request, without

forcing the initiator to sign every certificate?

– Ensure that delegation proceeds through a secure channel,

and let a delegate prove it got the certificate through such a

path of channels originating at the initiator.

30

EECS 345 Distributed Systems

Northwestern University

Summary

A key principle in distributed systems and perhaps the

most difficult to get right

We have looked at basic ideas

– Secure channels

– Ensuring controlled access to resources

– Security management

Clearly, just a sample of what’s out there

31

