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Dependability

To understand fault tolerance, we need to understand 
dependability
Components provide services, maybe by requiring 
services from other components a component may 
depend on another component
Some properties of dependability
– Availability – readiness for usage (probability of operating 

correctly at any moment)
– Reliability – continuity of service delivery (rather than 

probability, uptime)
– Safety – very low probability of catastrophes
– Maintainability – how easy can a failed system be repaired

For distributed systems, components can be either 
processes or channels
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Terminology

Failure – component cannot meet its promises
Error – part of a component’s state that can lead to a 
failure
Fault – the cause of an error
Fault tolerance – build a component so that it can 
meet its specifications in the presence of faults (i.e., 
mask the presence of faults)
Fault removal – reduce the presence, number, 
seriousness of faults
Fault forecasting – estimate the present number, 
future incidence, and the consequences of faults
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Failure models

Crash failures – a component simply halts, but 
behaves correctly before halting
Omission failures – … fails to respond to incoming 
requests
– Receive or send omission 

Timing failures – output is correct, but lies outside a 
specified real-time interval
Response failures – output is incorrect
– Value failure: The wrong value is produced
– State transition failure: Execution of the component’s service 

brings it into a wrong state

Arbitrary/byzantine failures – may produce arbitrary 
output and be subject to arbitrary timing failures
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Crash failures

Clients cannot distinguish between a crashed and a 
slow component
Fail-stop – the component exhibits crash failures, but 
its failure can be detected (either through 
announcement or timeouts)
Fail-silent – the component exhibits omission or crash 
failures; hard to tell what went wrong
Fail-safe – the component exhibits arbitrary, but 
benign failures (generating random output)
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Process resilience

Basic approach to masking faults – redundancy
To protect yourself against faulty processes – replicate 
and distribute computations in a group.
– Flat groups

• Symmetrical, no singe point of failure; 
decision making is more complicated

– Hierarchical groups
• All communication through a single 

coordinator not really fault tolerant 
and scalable, but relatively easy to 
implement.
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Groups and failure masking

A group that can mask k concurrent member failures, 
is k-fault tolerant (k is called degree of fault tolerance)
How large does a k-fault tolerant group need to be?
– Assume crash/performance failure semantics 2k + 1 

members are needed to survive k member failures

– Assume arbitrary/Byzantine failure semantics, and group 
output defined by voting 3k+1

• Assume processes are synchronous, messages are unicast and 
preserve ordering, communication delay is bounded

• Non-faulty group members should reach agreement on the same value
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Groups and failure masking

Each process i provides a value vi to the other N-1
Each process constructs  vector V of length N, such 
that if process i is not faulty, V[i] = i, otherwise is undef
The algorithm operates in four steps
1. Every non-faulty process i sends vi to every other using 

reliable unicast (a)
2. Results are collected into a vector (b)
3. Processes exchange their vectors (c)
4. Result vector is computed with majority value or UNKNOWN
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Groups and failure masking

What are the necessary conditions for reaching 
agreement?

Process: Synchronous operate in lockstep 
Delays: Are delays on communication bounded?
Ordering: Are messages delivered in the order they were sent?
Transmission: Are messages sent one-by-one, or multicast?
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Failure detection

Failure detection is key to fault tolerance
How do we detect process failures? 
– Keep alive messages
– Passively wait for a sign

Basically, detect failures through timeout mechanisms
– Setting timeouts properly is very difficult and application 

dependent
– You cannot distinguish process failures from network failures
– We need to consider failure notification throughout the 

system:
• Gossiping (i.e., proactively disseminate a failure detection)
• On failure detection, pretend you failed as well
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Reliable communication

What about reliable communication channels?
Error detection:
– Framing of packets to allow for bit error detection
– Use of frame numbering to detect packet loss

Error correction:
– Add so much redundancy that corrupted packets can be 

automatically corrected
– Request retransmission of lost, or last N packets

Most of this work assumes point-to-point 
communication
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Reliable RPC

What can go wrong with a remote procedure call?
1: Client cannot locate server
– Either went down or has a new version of the interface; 

relatively simple – just report back to client (of course, that’s 
not too transparent)

2: Client request is lost
– Just resend message after a timeout

3: Server crashes
– Harder to handle – we don’t know how far it went
– What should we expect from the server?

• At-least-once – guarantees an operation at least once, but perhaps more
• At-most-once – guarantees an operation at most once
• Exactly-once – no way to arrange this!

…
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Reliable RPC

Exactly-once semantics
– Client asks to print text, server sends completion
– Server can

• Send completion before (M→P) or after printing (P→M)

– Client can
• Always reissue, never reissue, reissue request only when 

ACK, reissue only when not ACK

– Not good solution for all situations! 
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Reliable RPC

4: Server response is lost
– Hard to detect, the server could also had crashed. Did it get it 

done? Solution: No much, try making operations idempotent

5: Client crashes
– Server is doing work and holding resources for nothing (doing 

an orphan computation)
• Orphan is killed (or rolled back) by client when it reboots
• Broadcast new epoch number when recovering servers kill 

orphans
• Require computations to complete in a T time units.

– Old ones are simply removed

14



EECS 345 Distributed Systems 
Northwestern University

Reliable group communication

Reliable multicast – guarantee that msgs are delivered 
to all members of a group
Basic model: A multicast channel c with two (possibly 
overlapping) groups:
– Sender group SND(c) of processes that submit msgs to c
– Receiver group RCV(c) that can receive messages from c

Simple reliability (non-faulty processes) & agreement 
on RCV
– If process P RCV(c) at the time message m was submitted 

to c, and P does not leave RCV(c), m should be delivered to P
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Reliable group communication

Observation: If we can stick to a local-area network, 
reliable multicasting is “easy”
Let the sender log messages submitted to channel c:
– If P sends message m, m is stored in a history buffer
– Each receiver acknowledges the receipt of m, or requests 

retransmission at P  when noticing message lost
– Sender P removes m from history buffer when everyone has 

acknowledged receipt

Why doesn’t this scale?
– N acks!

Solution – use NACKs instead
– Issue – how long should you keep the msg in the buffer?
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Scalable reliable multicast – SRM

Let a process P suppress its own feedback when it 
notices another process Q is already asking for a 
retransmission (Floyd et al.’s SRM)
Assumptions:
– All receivers listen to a common feedback channel to which 

feedback messages are submitted
– Process P schedules its own feedback message randomly, 

and suppresses it when observing another feedback message

A few issues
– The random interval is key
– Multicasting feedback also interrupt processes that got the 

request
– Other receivers can also help in the recovery
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Scalable reliable multicast – hierarchical

Add hierarchy for scalability – a hierarchical feedback 
channel in which all submitted messages are sent only 
to the root. 
Intermediate nodes aggregate feedback messages 
before passing them on

Main problem – tree construction
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Atomic multicast

Atomic multicast – the msg is delivered to all or none
– A msg is associated with a group of processes, a group view

Virtual synchronous – a msg is delivered to each non-
faulty process in G, if the sender crashes it can either 
be delivered to all or be ignored by all

Virtual synchrony let’s us see multicast as happening 
in epochs separated by group memberships
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Message ordering

What about order of messages?
– Unordered – virtual synchronous w/o order guarantees
– FIFO-ordered – from the same process in the same order
– Causally-ordered – preserving potential causality bet/ different 

messages
– Totally-ordered – whether unordered, FIFO or causally 

ordered, msgs are delivered in same order to all processes

Virtual synchronous reliable multicasting with totally-
ordered delivery – atomic multicasting
– e.g. causal multicast and causal atomic multicast – causal-

ordered without/with total-ordered delivery 
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Four processes, 
two senders, one 
possible FIFO-
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Virtual synchronous multicast in ISIS

Relies on reliable, ordered, unicast – TCP
– Multicast – reliable unicast each member in the group

Problem to solve – guarantee that all msgs sent to 
view G are delivery to all non-faulty processes in G 
before a membership change
To deal with crashed sender, every process in G 
keeps the message until it is sure everybody got it –
i.e. message is stable
Only stable messages can be delivered
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Virtual synchronous multicast in ISIS

When a process P receives view-change msg for Gi+1, 
– Forwards a copy of any unstable message from Gi to all 

processes in Gi+1
• When Q receives a copy of m sent in Gi, it delivers m (discards it if dup)

– Marks message as stable (remember – reliable point-to-point)
– To indicate it has no unstable messages left, mcast a flush 

message
– When it receives a flush message from all, installs new view
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Distributed commit

Atomic multicast – a form of distributed commit
Given a computation distributed across a process 
group, ensure that either all processes commit to the 
final result, or none of them do
– One-phase commit

• Coordinator tells everyone what to do – no way to know if they 
did it or not

– Two-phase commit
• Coordinator makes sure everybody is going to do it
• It can’t handle coordinator failure

– Three-phase commit
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Two-phase commit

Client that initiates computation acts as coordinator 
(C); processes required to commit are participants (P)
Phases
– 1a: C sends vote-request to all (a pre-write)
– 1b: When P receives vote-request it returns either vote-

commit or vote-abort to C; if it sends vote-abort, it aborts its 
local computation

– 2a: C collects all votes; if all are vote-commit, it sends global-
commit to all, otherwise it sends global-abort

– 2b: Each P waits for global-commit or global-abort and 
handles accordingly

24
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2PC and failures

Participant 
– Initial state – no problem, P was unaware of the protocol
– Ready state – waiting to either commit/abort, ask other P what to do
– Abort state – make intro into abort state idempotent, removing the 

workspace of results
– Commit state – also make entry into commit state idempotent, e.g., 

copying workspace to storage

Coordinator
– Record that it is entering WAIT so that it can possible retransmit the 

VOTE_REQUEST after recovering
– If it has decided either ABORT or COMMIT, retransmit it when 

recovered

If coordinator crashed when all participants have received 
and process the VOTE_REQUEST, everybody blocks!
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Three-phase commit

3PC to avoid blocking processes given fail-stop crash
– Rarely used, nevertheless, as in practice 2PC works fine

3PC
– 1a: C sends vote-request to all P
– 1b: P receives vote-request, it returns 

either vote-commit or vote-abort to C 
(and aborts its local computation)

– 2a: C collects all votes; if all vote-commit, 
sends prepare-commit to all, otherwise 
sends global-abort and halts

– 2b: Each P waits for it; if global-abort, halts
– 3a: C waits until all P have sent 

ready-commit, sends global-commit to all
– 3b: P waits for global-commit

26
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3PC and failures
If P is waiting in INIT or C in WAIT, ABORT
C is waiting on PRECOMMIT, GLOBAL_COMMIT
P is waiting in READY or PRECOMMIT, C failed so ask other P

– If somebody is in INIT, ABORT. A participant can be in INIT only if nobody is 
in PRECOMMIT (C needs to get VOTE_COMMIT to move anybody there)

– If other P is in COMMIT or ABORT, do the same
– If majority are in PRECOMMIT, commit everybody
– If majority are in READY, ABORT

Note, with 3PC a crashed process can only recover to INIT, 
ABORT or PRECOMMIT (no COMMIT)

27
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Recovery

When a failure occurs, bring system to error-free state
– Forward error recovery – find a new state from which the 

system can continue operation, e.g. erasure code
• Errors must be known in advance

– Backward error recovery – bring system back into a previous 
error-free state, e.g. checkpointing & rollback

• Application independent
• Use backward error recovery, requires establishing recovery points (kept 

in stable storage)
• Not everything can be rollback (ATM withdraw)
• Performance hit – combine checkpointing with logging 

Recovery in distributed systems – processes need to 
cooperate in identifying a consistent state from where 
to recover
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Consistent recovery state
Every message received is also shown to have been sent in the 
state of the sender
Recovery line – assuming processes regularly checkpoint their 
state, the most recent consistent global checkpoint
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If checkpointing is 
done at the 
“wrong” times, the 
recovery line may 
lie at system 
startup time 
cascaded rollback
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Coordinated checkpointing

Independent checkpointing
– Mayor problem – computing the recovery line

Coordinated checkpointing
– Each process takes checkpoint after a globally coordinated 

action
– Simple solution: Use a two-phase blocking protocol

• A coordinator multicasts a checkpoint request msg
• When a participant receives this msg, it takes a checkpoint, stops 

sending (application) msgs, and reports back that it has taken a 
checkpoint

• When all checkpoints have been confirmed at the coordinator, the latter 
broadcasts a checkpoint done msg to allow all processes to continue

It is possible to consider only processes that depend 
on the recovery of the coordinator, and ignore the rest
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Message logging

Instead of taking an (expensive) checkpoint, try to 
replay your (communication) behavior from the most 
recent checkpoint store messages in a log
Assume a piecewise deterministic execution model:
– The execution of each process can be considered as a 

sequence of state intervals
– Each state interval starts with a nondeterministic event (e.g., 

message receipt)
– Execution in a state interval is deterministic

If we record nondeterministic events (for later replay), 
we obtain a deterministic execution model that will 
allow a complete replay
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Message logging and consistency

When should we actually log messages?
Issue: Avoid orphans:
– Process Q has just received and subsequently delivered 

messages m1 and m2
– Assume that m2 is never logged
– After delivering m1 and m2, Q sends msg m3 to process R
– Process R receives and subsequently delivers m3

We need message logging schemes in which orphans 
do not occur
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Message-logging schemes

HDR[m] – header of msg contains src, dest, seq #, …
– All what’s needed to resend and deliver it in the correct order
– A msg m is stable if HDR[m] cannot be lost (in stable storage)

DEP[m] – set of processes to which m, or another msg
causally depending on m, has been delivered
COPY[m] – set of processes that have a copy of 
HDR[m] in their volatile memory
If C is a collection of crashed processes, then Q is an 
orphan if there’s a msg m such that Q in DEP[m] and 
every process in COPY[m] has crashed (i.e. C)
– That is, it depends on m but there’s no way to replay m’s 

transmission

33



EECS 345 Distributed Systems 
Northwestern University

Message-logging schemes

Goal: No orphans means that for each msg m, 
DEP[m] COPY[m]
Pessimistic protocol: for each non-stable msg m, there 
is at most one process dependent on m, |DEP[m]| ≤ 1
– An unstable msg must be made stable before sending another

Optimistic protocol: for each unstable message m, we 
ensure that if COPY[m] C, then eventually also 
DEP[m] C, where C denotes a set of processes that 
have been marked as faulty
– To guarantee that DEP[m] C, we generally rollback each 

orphan process Q until Q not-in DEP[m]
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Summary

Fault tolerant becomes increasingly important for 
distributed systems
Redundancy is the key technique to achieve fault 
tolerance
With process redundancy, you now need agreement
And, of course, once a failure has occurred, there’s 
nothing to do but to recover to a correct state

35


	Fault Tolerance
	Dependability
	Terminology
	Failure models
	Crash failures
	Process resilience
	Groups and failure masking
	Groups and failure masking
	Groups and failure masking
	Failure detection
	Reliable communication
	Reliable RPC
	Reliable RPC
	Reliable RPC
	Reliable group communication
	Reliable group communication
	Scalable reliable multicast – SRM
	Scalable reliable multicast – hierarchical
	Atomic multicast
	Message ordering
	Virtual synchronous multicast in ISIS
	Virtual synchronous multicast in ISIS
	Distributed commit
	Two-phase commit
	2PC and failures
	Three-phase commit
	3PC and failures
	Recovery
	Consistent recovery state
	Coordinated checkpointing
	Message logging
	Message logging and consistency
	Message-logging schemes
	Message-logging schemes
	Summary

