
Today
Introduction to fault tolerance
Process resilience
Communication resilience
Distributed commit
Recovery

Fault Tolerance

EECS 345 Distributed Systems
Northwestern University

Dependability

To understand fault tolerance, we need to understand
dependability
Components provide services, maybe by requiring
services from other components a component may
depend on another component
Some properties of dependability
– Availability – readiness for usage (probability of operating

correctly at any moment)
– Reliability – continuity of service delivery (rather than

probability, uptime)
– Safety – very low probability of catastrophes
– Maintainability – how easy can a failed system be repaired

For distributed systems, components can be either
processes or channels

2

EECS 345 Distributed Systems
Northwestern University

Terminology

Failure – component cannot meet its promises
Error – part of a component’s state that can lead to a
failure
Fault – the cause of an error
Fault tolerance – build a component so that it can
meet its specifications in the presence of faults (i.e.,
mask the presence of faults)
Fault removal – reduce the presence, number,
seriousness of faults
Fault forecasting – estimate the present number,
future incidence, and the consequences of faults

3

EECS 345 Distributed Systems
Northwestern University

Failure models

Crash failures – a component simply halts, but
behaves correctly before halting
Omission failures – … fails to respond to incoming
requests
– Receive or send omission

Timing failures – output is correct, but lies outside a
specified real-time interval
Response failures – output is incorrect
– Value failure: The wrong value is produced
– State transition failure: Execution of the component’s service

brings it into a wrong state

Arbitrary/byzantine failures – may produce arbitrary
output and be subject to arbitrary timing failures

4

EECS 345 Distributed Systems
Northwestern University

Crash failures

Clients cannot distinguish between a crashed and a
slow component
Fail-stop – the component exhibits crash failures, but
its failure can be detected (either through
announcement or timeouts)
Fail-silent – the component exhibits omission or crash
failures; hard to tell what went wrong
Fail-safe – the component exhibits arbitrary, but
benign failures (generating random output)

5

EECS 345 Distributed Systems
Northwestern University

Process resilience

Basic approach to masking faults – redundancy
To protect yourself against faulty processes – replicate
and distribute computations in a group.
– Flat groups

• Symmetrical, no singe point of failure;
decision making is more complicated

– Hierarchical groups
• All communication through a single

coordinator not really fault tolerant
and scalable, but relatively easy to
implement.

6

EECS 345 Distributed Systems
Northwestern University

Groups and failure masking

A group that can mask k concurrent member failures,
is k-fault tolerant (k is called degree of fault tolerance)
How large does a k-fault tolerant group need to be?
– Assume crash/performance failure semantics 2k + 1

members are needed to survive k member failures

– Assume arbitrary/Byzantine failure semantics, and group
output defined by voting 3k+1

• Assume processes are synchronous, messages are unicast and
preserve ordering, communication delay is bounded

• Non-faulty group members should reach agreement on the same value

7

1

2

3

A

A
AA

Y

X

Letter: A

What letter is it?

EECS 345 Distributed Systems
Northwestern University

Groups and failure masking

Each process i provides a value vi to the other N-1
Each process constructs vector V of length N, such
that if process i is not faulty, V[i] = i, otherwise is undef
The algorithm operates in four steps
1. Every non-faulty process i sends vi to every other using

reliable unicast (a)
2. Results are collected into a vector (b)
3. Processes exchange their vectors (c)
4. Result vector is computed with majority value or UNKNOWN

8

EECS 345 Distributed Systems
Northwestern University

Groups and failure masking

What are the necessary conditions for reaching
agreement?

Process: Synchronous operate in lockstep
Delays: Are delays on communication bounded?
Ordering: Are messages delivered in the order they were sent?
Transmission: Are messages sent one-by-one, or multicast?

9

In practice, most
distributed
systems assume
…

EECS 345 Distributed Systems
Northwestern University

Failure detection

Failure detection is key to fault tolerance
How do we detect process failures?
– Keep alive messages
– Passively wait for a sign

Basically, detect failures through timeout mechanisms
– Setting timeouts properly is very difficult and application

dependent
– You cannot distinguish process failures from network failures
– We need to consider failure notification throughout the

system:
• Gossiping (i.e., proactively disseminate a failure detection)
• On failure detection, pretend you failed as well

10

EECS 345 Distributed Systems
Northwestern University

Reliable communication

What about reliable communication channels?
Error detection:
– Framing of packets to allow for bit error detection
– Use of frame numbering to detect packet loss

Error correction:
– Add so much redundancy that corrupted packets can be

automatically corrected
– Request retransmission of lost, or last N packets

Most of this work assumes point-to-point
communication

11

EECS 345 Distributed Systems
Northwestern University

Reliable RPC

What can go wrong with a remote procedure call?
1: Client cannot locate server
– Either went down or has a new version of the interface;

relatively simple – just report back to client (of course, that’s
not too transparent)

2: Client request is lost
– Just resend message after a timeout

3: Server crashes
– Harder to handle – we don’t know how far it went
– What should we expect from the server?

• At-least-once – guarantees an operation at least once, but perhaps more
• At-most-once – guarantees an operation at most once
• Exactly-once – no way to arrange this!

…

12

EECS 345 Distributed Systems
Northwestern University

Reliable RPC

Exactly-once semantics
– Client asks to print text, server sends completion
– Server can

• Send completion before (M→P) or after printing (P→M)

– Client can
• Always reissue, never reissue, reissue request only when

ACK, reissue only when not ACK

– Not good solution for all situations!

13

EECS 345 Distributed Systems
Northwestern University

Reliable RPC

4: Server response is lost
– Hard to detect, the server could also had crashed. Did it get it

done? Solution: No much, try making operations idempotent

5: Client crashes
– Server is doing work and holding resources for nothing (doing

an orphan computation)
• Orphan is killed (or rolled back) by client when it reboots
• Broadcast new epoch number when recovering servers kill

orphans
• Require computations to complete in a T time units.

– Old ones are simply removed

14

EECS 345 Distributed Systems
Northwestern University

Reliable group communication

Reliable multicast – guarantee that msgs are delivered
to all members of a group
Basic model: A multicast channel c with two (possibly
overlapping) groups:
– Sender group SND(c) of processes that submit msgs to c
– Receiver group RCV(c) that can receive messages from c

Simple reliability (non-faulty processes) & agreement
on RCV
– If process P RCV(c) at the time message m was submitted

to c, and P does not leave RCV(c), m should be delivered to P

15

EECS 345 Distributed Systems
Northwestern University

Reliable group communication

Observation: If we can stick to a local-area network,
reliable multicasting is “easy”
Let the sender log messages submitted to channel c:
– If P sends message m, m is stored in a history buffer
– Each receiver acknowledges the receipt of m, or requests

retransmission at P when noticing message lost
– Sender P removes m from history buffer when everyone has

acknowledged receipt

Why doesn’t this scale?
– N acks!

Solution – use NACKs instead
– Issue – how long should you keep the msg in the buffer?

16

EECS 345 Distributed Systems
Northwestern University

Scalable reliable multicast – SRM

Let a process P suppress its own feedback when it
notices another process Q is already asking for a
retransmission (Floyd et al.’s SRM)
Assumptions:
– All receivers listen to a common feedback channel to which

feedback messages are submitted
– Process P schedules its own feedback message randomly,

and suppresses it when observing another feedback message

A few issues
– The random interval is key
– Multicasting feedback also interrupt processes that got the

request
– Other receivers can also help in the recovery

17

EECS 345 Distributed Systems
Northwestern University

Scalable reliable multicast – hierarchical

Add hierarchy for scalability – a hierarchical feedback
channel in which all submitted messages are sent only
to the root.
Intermediate nodes aggregate feedback messages
before passing them on

Main problem – tree construction

18

EECS 345 Distributed Systems
Northwestern University

Atomic multicast

Atomic multicast – the msg is delivered to all or none
– A msg is associated with a group of processes, a group view

Virtual synchronous – a msg is delivered to each non-
faulty process in G, if the sender crashes it can either
be delivered to all or be ignored by all

Virtual synchrony let’s us see multicast as happening
in epochs separated by group memberships

19

EECS 345 Distributed Systems
Northwestern University

Message ordering

What about order of messages?
– Unordered – virtual synchronous w/o order guarantees
– FIFO-ordered – from the same process in the same order
– Causally-ordered – preserving potential causality bet/ different

messages
– Totally-ordered – whether unordered, FIFO or causally

ordered, msgs are delivered in same order to all processes

Virtual synchronous reliable multicasting with totally-
ordered delivery – atomic multicasting
– e.g. causal multicast and causal atomic multicast – causal-

ordered without/with total-ordered delivery

20

Four processes,
two senders, one
possible FIFO-
ordered delivery

However, this
violates
total-ordering

EECS 345 Distributed Systems
Northwestern University

Virtual synchronous multicast in ISIS

Relies on reliable, ordered, unicast – TCP
– Multicast – reliable unicast each member in the group

Problem to solve – guarantee that all msgs sent to
view G are delivery to all non-faulty processes in G
before a membership change
To deal with crashed sender, every process in G
keeps the message until it is sure everybody got it –
i.e. message is stable
Only stable messages can be delivered

21

EECS 345 Distributed Systems
Northwestern University

Virtual synchronous multicast in ISIS

When a process P receives view-change msg for Gi+1,
– Forwards a copy of any unstable message from Gi to all

processes in Gi+1
• When Q receives a copy of m sent in Gi, it delivers m (discards it if dup)

– Marks message as stable (remember – reliable point-to-point)
– To indicate it has no unstable messages left, mcast a flush

message
– When it receives a flush message from all, installs new view

22

EECS 345 Distributed Systems
Northwestern University

Distributed commit

Atomic multicast – a form of distributed commit
Given a computation distributed across a process
group, ensure that either all processes commit to the
final result, or none of them do
– One-phase commit

• Coordinator tells everyone what to do – no way to know if they
did it or not

– Two-phase commit
• Coordinator makes sure everybody is going to do it
• It can’t handle coordinator failure

– Three-phase commit

23

EECS 345 Distributed Systems
Northwestern University

Two-phase commit

Client that initiates computation acts as coordinator
(C); processes required to commit are participants (P)
Phases
– 1a: C sends vote-request to all (a pre-write)
– 1b: When P receives vote-request it returns either vote-

commit or vote-abort to C; if it sends vote-abort, it aborts its
local computation

– 2a: C collects all votes; if all are vote-commit, it sends global-
commit to all, otherwise it sends global-abort

– 2b: Each P waits for global-commit or global-abort and
handles accordingly

24

Coordinator Participant

EECS 345 Distributed Systems
Northwestern University

2PC and failures

Participant
– Initial state – no problem, P was unaware of the protocol
– Ready state – waiting to either commit/abort, ask other P what to do
– Abort state – make intro into abort state idempotent, removing the

workspace of results
– Commit state – also make entry into commit state idempotent, e.g.,

copying workspace to storage

Coordinator
– Record that it is entering WAIT so that it can possible retransmit the

VOTE_REQUEST after recovering
– If it has decided either ABORT or COMMIT, retransmit it when

recovered

If coordinator crashed when all participants have received
and process the VOTE_REQUEST, everybody blocks!

25

EECS 345 Distributed Systems
Northwestern University

Three-phase commit

3PC to avoid blocking processes given fail-stop crash
– Rarely used, nevertheless, as in practice 2PC works fine

3PC
– 1a: C sends vote-request to all P
– 1b: P receives vote-request, it returns

either vote-commit or vote-abort to C
(and aborts its local computation)

– 2a: C collects all votes; if all vote-commit,
sends prepare-commit to all, otherwise
sends global-abort and halts

– 2b: Each P waits for it; if global-abort, halts
– 3a: C waits until all P have sent

ready-commit, sends global-commit to all
– 3b: P waits for global-commit

26

Coordinator

Participant

EECS 345 Distributed Systems
Northwestern University

3PC and failures
If P is waiting in INIT or C in WAIT, ABORT
C is waiting on PRECOMMIT, GLOBAL_COMMIT
P is waiting in READY or PRECOMMIT, C failed so ask other P

– If somebody is in INIT, ABORT. A participant can be in INIT only if nobody is
in PRECOMMIT (C needs to get VOTE_COMMIT to move anybody there)

– If other P is in COMMIT or ABORT, do the same
– If majority are in PRECOMMIT, commit everybody
– If majority are in READY, ABORT

Note, with 3PC a crashed process can only recover to INIT,
ABORT or PRECOMMIT (no COMMIT)

27

Coordinator Participant

EECS 345 Distributed Systems
Northwestern University

Recovery

When a failure occurs, bring system to error-free state
– Forward error recovery – find a new state from which the

system can continue operation, e.g. erasure code
• Errors must be known in advance

– Backward error recovery – bring system back into a previous
error-free state, e.g. checkpointing & rollback

• Application independent
• Use backward error recovery, requires establishing recovery points (kept

in stable storage)
• Not everything can be rollback (ATM withdraw)
• Performance hit – combine checkpointing with logging

Recovery in distributed systems – processes need to
cooperate in identifying a consistent state from where
to recover

28

EECS 345 Distributed Systems
Northwestern University

Consistent recovery state
Every message received is also shown to have been sent in the
state of the sender
Recovery line – assuming processes regularly checkpoint their
state, the most recent consistent global checkpoint

29

If checkpointing is
done at the
“wrong” times, the
recovery line may
lie at system
startup time
cascaded rollback

EECS 345 Distributed Systems
Northwestern University

Coordinated checkpointing

Independent checkpointing
– Mayor problem – computing the recovery line

Coordinated checkpointing
– Each process takes checkpoint after a globally coordinated

action
– Simple solution: Use a two-phase blocking protocol

• A coordinator multicasts a checkpoint request msg
• When a participant receives this msg, it takes a checkpoint, stops

sending (application) msgs, and reports back that it has taken a
checkpoint

• When all checkpoints have been confirmed at the coordinator, the latter
broadcasts a checkpoint done msg to allow all processes to continue

It is possible to consider only processes that depend
on the recovery of the coordinator, and ignore the rest

30

EECS 345 Distributed Systems
Northwestern University

Message logging

Instead of taking an (expensive) checkpoint, try to
replay your (communication) behavior from the most
recent checkpoint store messages in a log
Assume a piecewise deterministic execution model:
– The execution of each process can be considered as a

sequence of state intervals
– Each state interval starts with a nondeterministic event (e.g.,

message receipt)
– Execution in a state interval is deterministic

If we record nondeterministic events (for later replay),
we obtain a deterministic execution model that will
allow a complete replay

31

EECS 345 Distributed Systems
Northwestern University

Message logging and consistency

When should we actually log messages?
Issue: Avoid orphans:
– Process Q has just received and subsequently delivered

messages m1 and m2
– Assume that m2 is never logged
– After delivering m1 and m2, Q sends msg m3 to process R
– Process R receives and subsequently delivers m3

We need message logging schemes in which orphans
do not occur

32

EECS 345 Distributed Systems
Northwestern University

Message-logging schemes

HDR[m] – header of msg contains src, dest, seq #, …
– All what’s needed to resend and deliver it in the correct order
– A msg m is stable if HDR[m] cannot be lost (in stable storage)

DEP[m] – set of processes to which m, or another msg
causally depending on m, has been delivered
COPY[m] – set of processes that have a copy of
HDR[m] in their volatile memory
If C is a collection of crashed processes, then Q is an
orphan if there’s a msg m such that Q in DEP[m] and
every process in COPY[m] has crashed (i.e. C)
– That is, it depends on m but there’s no way to replay m’s

transmission

33

EECS 345 Distributed Systems
Northwestern University

Message-logging schemes

Goal: No orphans means that for each msg m,
DEP[m] COPY[m]
Pessimistic protocol: for each non-stable msg m, there
is at most one process dependent on m, |DEP[m]| ≤ 1
– An unstable msg must be made stable before sending another

Optimistic protocol: for each unstable message m, we
ensure that if COPY[m] C, then eventually also
DEP[m] C, where C denotes a set of processes that
have been marked as faulty
– To guarantee that DEP[m] C, we generally rollback each

orphan process Q until Q not-in DEP[m]

34

EECS 345 Distributed Systems
Northwestern University

Summary

Fault tolerant becomes increasingly important for
distributed systems
Redundancy is the key technique to achieve fault
tolerance
With process redundancy, you now need agreement
And, of course, once a failure has occurred, there’s
nothing to do but to recover to a correct state

35

	Fault Tolerance
	Dependability
	Terminology
	Failure models
	Crash failures
	Process resilience
	Groups and failure masking
	Groups and failure masking
	Groups and failure masking
	Failure detection
	Reliable communication
	Reliable RPC
	Reliable RPC
	Reliable RPC
	Reliable group communication
	Reliable group communication
	Scalable reliable multicast – SRM
	Scalable reliable multicast – hierarchical
	Atomic multicast
	Message ordering
	Virtual synchronous multicast in ISIS
	Virtual synchronous multicast in ISIS
	Distributed commit
	Two-phase commit
	2PC and failures
	Three-phase commit
	3PC and failures
	Recovery
	Consistent recovery state
	Coordinated checkpointing
	Message logging
	Message logging and consistency
	Message-logging schemes
	Message-logging schemes
	Summary

