
Paper By:
John Dunagan 
Nicholas J.A. Harvey 
Michael B. Jones 
Dejan Kostic
Marvin Theimer 
Alec Wolman

Presentation by:
Rahul Potharaju
EECS 345



Introduction

What is it all 
about?

• Background

• Overall theme

• How it works?

• Implementation

• Evaluation



Failure Detection

Unreliable Failure 
Detectors

Provide the weakest 
semantics directly

Standard Building Blocks

Weakly Consistent 
Membership Services

Based on the abstraction 
of available or 

unavailable components

Strongly Consistent 
Membership Services

Based on the abstraction 
of available or 

unavailable components



Unreliable Failure 
Detectors

• Introduced by Chandra and Toueg
• Used to solve consensus

•Alice  Bob  Alice  Bob … It never ends!
• Provide periodic heartbeats saying “I’m alive”
• Provide a semantic guarantee despite the “unreliable” notion: fail-stop 
crashes will be identified within a bound time – FUSE uses this but 
provides a stronger version

Weakly Consistent 
Membership Services

• Lots of work in this field. They differ in speed, accuracy etc...
• FUSE handles intransitive connectivity problems

• A  B works
• B  C works
• A  C doesn’t work

Strongly Consistent 
Membership Services

• Share the abstraction of a membership list too, but they guarantee 
that all nodes see a consistent list by using atomic updates
• Performs well only at a small scale



• Robust programming model that simplifies application development

• Guaranteed failure notification within bounded period of time

• Applications create a FUSE group with an immutable list of participants
• FUSE monitors this group till a failure is detected by FUSE or application 
triggers failure.
• Thus, responsibility of detecting failures shared between FUSE and 
application.

• Applications: Wide-area internet applications such as content delivery 
networks, peer-to-peer applications, web-services and grid computing



//Creates a FUSE notification group 
containing the nodes in the set
FuseIdCreateGroup (NodeId[] set)

//Registers a call back function to be invoked 
when a notification occurs for the FUSE 
group
Void RegisterFailureHandler
(Callbackhandler, FuseId id)

//Allows the application to explicitly cause 
FUSE failure notification
Void SignalFailure(FuseId id)

Basic Flow:

• Every node in the system runs a FUSE layer. 

• Can create multiple FUSE groups between 
same set of nodes. 

• Application invokes the  corresponding API to 
create a FUSE group

FuseId CreateGroup(NodeId[] set)  

• FUSE layer on every node contacted (possibly 
concurrently) and initialized.

• Application passes on FuseId to every node in 
the set.

• Each node registers a callback associated with 
the FuseId using the
void RegisterFailureHandler(Callback handler, FuseId id)

More in the implementation stage…



Success

Success is reported to the 
creator

Failure

Member unreachable?

Invoke Failure Handlers 
(Members already informed) 
 Part of FUSE Garbage 

collection mechanism

Attempt to associate with a 
non-existent handler?

Invoke failure handler



What happens subsequently?
• Nodes periodically ping each other.

• If a node initiates a ping that is missed, the node itself stops responding to future 
pings: ensures that individual observation of a failure converted into a group 
notification.

• Nodes notified of failure through callback

• Failure notification can be triggered
• explicitly, by application 
• or implicitly when FUSE detects communication failure among group members.

• A node can never know if the failure was caused due to a network failure or a node 
failure.

• Danger of false positives exist.

• FUSE members on both sides of the partition will receive failure notifications, but it is 
not possible to communicate additional information across the partition.



Are you okay?

Are you okay?

Yes. I am.

Yes. I am.





Are you okay?

Are you okay?

……………………

…………………….





B2 lights the fuse and the failure 
affects the entire group…

Are you okay?

Are you okay?

Yes. I am.



……………..

Ok… You are not okay!

Good Failure Propagates

False Positive Fail-on-send

Are you okay?

Yes. I am.

Are you okay?

Yes. I am.

Send this message

NO!


 



• Crash recovery: 

• A recovering node does not know if a failure notification was triggered. 

• FUSE handles this by nodes actively comparing the live FUSE groups during 
liveness checking.

• FUSE does not use stable storage, but can be used for masking transient 
failures.

• Liveness checking topologies: per-group spanning trees on an overlay network

• Constructing liveness topologies on overlay networks allows existing overlay 
liveness checks to be reused.

• Overlay nodes that are not part of FUSE groups may not forward failure 
notifications.

What happens subsequently?



A B C D

A FUSE group with two members being monitored by overlay pings

End-to-End Checking

A B C D

Two FUSE groups being monitored by overlay pings (!(B  C)  (B  A) & (C  D)

End-to-End Checking

E

X: Group(A,D)

X: Group(A,D)

Y: Group(E, A, D)

X

X

Y Y



E  C: Can you forward a message to A?
C: Sure. No problem.
…
…
C: I lied to you! I won’t forward it.
A never receives a message

E  C: Can you forward a message to A?
C: Ok
…
After sometime
C: I almost forgot about E.
A receives a message after sometime

C is a Malicious Node: 
Violates the FUSE Principle by not participating

C is a Malicious Node: 
Violates the FUSE Principle by delaying messages

C  E: Hey… A failed to respond
E: Ok. I’m going down
C  A: Hey… E failed to respond
A: Ok. I’m going down
…
Repeats the same after recovery

C is a Malicious Node: 
Violates the FUSE Principle by initiating DoS Attacks



• Violation of FUSE semantics: Dropped notifications 

• handled using multiple dissemination trees 

• Can use all-to-all pinging – but high overhead.

• By delegates (overlay nodes that are not actually members): 

• use per-group spanning trees without using overlay nodes

• Increases the amount of liveness checking traffic.

• DoS attacks: malicious node causing frequent 
unnecessary failure notifications.



• Scalable overlay networks such as Chord, CAN, Pastry, and Tapestry have recently 
emerged as flexible infrastructure for building large peer-to-peer systems.

• They provide no control over where data is stored

• No guarantee that routing paths remain within an administrative domain 
whenever possible

• Meet SKIPNET



• SkipNet is a scalable overlay network that provides controlled data placement and 
guaranteed routing locality by organizing data primarily by string names

• SkipNet allows for both fine-grained and coarse-grained control over data 
placement: Content can be placed either on a pre-determined node or distributed 
uniformly across the nodes of a hierarchical naming sub tree

• An additional useful consequence of SkipNet's locality properties is that partition 
failures, in which an entire organization disconnects from the rest of the system, can 
result in two disjoint, but well-connected overlay networks.

• When an entire organization disconnects from the rest of the system, repair of only a 
few pointers quickly enables efficient routing throughout the disconnected 
organization; full repair is done as a subsequent background task. These same 
operations can be later used to efficiently reconnect an organization's SkipNet back 
into the global one.



• Implemented on top of SkipNet

• SkipNet features

• Messages routed through the overlay result in a client up call on every 
intermediate overlay hop.

• Overlay routing table is visible to the client.

• Route directly between members during creation and failure notifications – reduces 
false positives.

• Group creation:

• Creation request/response directly between root and member nodes

• Members simultaneously route InstallChecking messages through the overlay 
towards root. This prepares overlay nodes for future liveness forwarding



• Steady-State

• Piggyback a hash containing all FUSE groups that use a particular overlay link on the SkipNet 
ping messages. 

• Reuse overlay routing table maintenance traffic for liveness checking

• Notifications

• Hard notifications used to dismantle the group 

• Direct communication. Reduces latency.

• Soft notifications used to clear state on the liveness checking tree.

• Member receiving soft notifications initiates repair directly with the root (group creator).

• Provides resilience to delegate failures.
• Repair

• NeedRepair msg: Sent by members to root. (In order to reduce latency)

• SoftNotification: Sent by delegates to root.

• Otherwise repair mostly similar to group creation.



A B C D

E
Group Create Reply

Group Create Request

Y Y
Group Create Reply

A B C D

E
Hard Notification Hard Notification

Receives a reply and then 
distributes a FUSE ID



• Latency of group creation: As 
group size increases, latency 
increases since although nodes 
contacted in parallel, probability of 
encountering a slow link is 
increased.

– Note: Groups created by direct 
messages and hence unaffected by 
the size of the network.



• Latency of Failure notification

– Explicit notification:- Lower than 
creation due to

• cached TCP connections

• One-way message

• Non-blocking.

– Crash failures: with ping interval of 
1 min and timeout of 30 secs. –
TCP connection timeout 
dominates.



Significant difference in the latency 
of group creation and latency of 
signaled notification – Why?

Due to open TCP connections
TCP Caches



• At steady state, no additional traffic 
introduced. (However, message size increased 
by 20 bytes due to hash)

• With churn: with average network size of 300 
and an additional 100 nodes churn, FUSE soft 
notifications result in a 33% increase in 
messages (Is that good or bad?)

– Price paid for reusing overlay liveness..

• False positives:

– Unreliable communication links
• Under high loss rates more groups failed 

(obvious)
• Larger the group size, greater the probability of 

encountering an unreliable link.

– Delegate failures: Never generated false 
positives (due to soft notifications and repair)



• Can scale with the number of groups

• Multiple FUSE groups can share liveness checking messages

• Designed to support large number of small and medium sized 
groups.

• If application already uses a scalable overlay, FUSE can reuse 
existing liveness checking. Otherwise can implement its own 
overlay or alternative liveness checking topology.

• Allows applications to declare failures even when application level 
constraints are violated.

– FAILURE could mean system failure, violation of application constraints, 
invalidation of shared data etc. …



• Is the scalable claim true?

– Scalable IF implemented on an overlay. Otherwise FUSE does introduce 
liveness checking traffic.. Implications?

• Cannot be used for consensus.
– No where did they mention again about solving the consensus problem or 

did I miss it?

• How to model other failure paradigms like say ‘group alive as long 
as quorum exists’

– FUSE model always implies that even a single failure implies group failure.
– Is this kind of implication always suitable?

• Talking about timeouts but did we miss clock synchronization by 
any chance?


