
Today
Reasons for replication
Consistency models
Replica management
Consistency protocols

Consistency and Replication

EECS 345 Distributed Systems
Northwestern University

Performance and scalability

Replications for reliability and performance
To keep replicas consistent, ensure that all conflicting
operations are done in the same order everywhere
Conflicting operations: from the world of transactions
– Read–write conflict: a read & write operation act concurrently
– Write–write conflict: two concurrent write operations

Guaranteeing global ordering on conflicting operations
may be a costly operation, downgrading scalability
Solution: weaken consistency requirements so that
hopefully global synchronization can be avoided

2

EECS 345 Distributed Systems
Northwestern University

Data-centric consistency models

A data store is a distributed collection of storages
accessible to clients

Consistency model: a contract between a (distributed)
data store and processes, where data store specifies
precisely what the results of read/write operations are
in the presence of concurrency

3

EECS 345 Distributed Systems
Northwestern University

Continuous consistency

We can actually talk a about a degree of consistency:
– Replicas may differ in their numerical value (relative or

absolute difference – your account balance)
– Replicas may differ in their relative staleness
– There may differences with respect to (number and order) of

performed update operations

Conit: consistency unit specifies the data unit over
which consistency is to be measured
– A single stock in the stock exchange example
– The account balance

Too fine-grained conits, more to manage; too coarse-
grain conits, false sharing …

4

EECS 345 Distributed Systems
Northwestern University

Example - conit

Conit: contains the variables x and y
– Two replicas, each maintains a vector clock
– B sends A operation [5,B: x := x + 2]; A has made this

operation permanent (cannot be rolled back)
– A has three pending operations order deviation = 3
– A has missed one operation from B (y := y + 5), yielding a

max diff of 5 units (1,5)

5

EECS 345 Distributed Systems
Northwestern University

Sequential consistency

The result of any execution is the same as if the
operations of all processes were executed in some
sequential order, and the operations of each process
appear in this sequence in the order specified by its
program
Any valid interleaving of operations is OK, but all
processes see the same interleaving

6

EECS 345 Distributed Systems
Northwestern University

Causal consistency

Writes that are potentially causally related must be
seen by all processes in the same order. Concurrent
writes may be seen in different order by different
processes

7

EECS 345 Distributed Systems
Northwestern University

Grouping operations – entry consistency

Basic idea: don’t care that reads and writes of a series
of ops are immediately known to other processes; just
want the effect of the series itself to be known
– Accesses to synchronization variables are sequentially

consistent
– No access to a synchronization variable is allowed until all

previous writes have completed everywhere
– No data access is allowed until all previous accesses to

synchronization variables have been performed

Weak consistency implies that we need to lock/unlock
data (implicitly or not)

8

P2 will get a for x, but may
get nil when reading y

Since P3 first does an
acquire for y, it will read b
when y is released by P1

EECS 345 Distributed Systems
Northwestern University

Client-centric consistency models

For some distributed data stores with rare
simultaneous updates, eventual consistency is enough
– DNS, WWW, distributed email

Problems may show up if the same user access data
from different replicas
Consider a distributed database to which you have
access through a notebook (that acts as a front end)
– At location A you access the database doing reads/updates.
– At B you continue working, but …

9

EECS 345 Distributed Systems
Northwestern University

Client-centric consistency models

– … but unless you access the same server as when at A, you
may detect inconsistencies:

– your updates at A may not have yet been propagated to B
– you may be reading newer entries than the ones available at A
– your updates at B may eventually conflict with those at A

All you want is that the entries you updated and/or
read at A, are in B the way you left them in A. In that
case, the database will seem consistent to you
Client-centric consistency – consistency for a single
client, nothing about concurrent access by different
clients

10

EECS 345 Distributed Systems
Northwestern University

Monotonic reads

If a process reads the value of a data item x, any
successive read operation on x by that process will
always return that same or a more recent value
If you’ve seen a value of x at time t, you’ll never se
anything older at a later time

Examples:
– Reading your personal calendar updates from different servers.
– Reading (not modifying) incoming mail in the move

11

The set of write operations
at L2 include those done at L1

EECS 345 Distributed Systems
Northwestern University

Monotonic writes

A write operation by a process on a data item x is
completed before any successive write operation on x
by the same process
i.e. a write on x is performaced only if that copy has
been brought up to date

Example
– Maintaining versions of replicated files in the correct order

everywhere (CVS-like)

12

EECS 345 Distributed Systems
Northwestern University

Read your writes

The effect of a write operation by a process on data
item x, will always be seen by a successive read
operation on x by the same process
i.e. a write is always completed before a successive
read by the same process, no matter where the read is

Example:
– Changing your password in dylan and try to login into zappa

too soon after

13

EECS 345 Distributed Systems
Northwestern University

Writes follows reads

A write operation by a process on a data item x
following a previous read operation on x by the same
process, is guaranteed to take place on the same or a
more recent value of x that was read

Example:
– See reactions to posted articles only if you have seen the

original posting (a read “pulls in” the corresponding write
operation)

14

EECS 345 Distributed Systems
Northwestern University

Replica placement

What are the best K out of N possible locations for a
replica
– Select one server at a time so to minimize the average

distance between clients and replicas. Computationally
expensive.

– Look at the Internet topology, in terms of Autonomous
Systems (AS). Select the K-th largest AS and place a server
at the best-connected host. Computationally expensive.

– Position nodes in a d-dimensional geometric space, where
distance reflects latency. Identify the K regions with highest
density and place a server in every one. To compute the
region size use the average distance between two nodes and
K. Computationally cheaper.

15

EECS 345 Distributed Systems
Northwestern University

Content replication

Distinguish different processes: A process is capable
of hosting a replica of an object or data:
– Permanent replicas: Process/machine always having a

replica, think of it as the initial set
– Server-initiated replica: Process that can dynamically host a

replica on request of another server in the data store
(remember you already have the replica servers placed)

– Client-initiated replica: Process that can dynamically host a
replica on request of a client (client cache)

16

EECS 345 Distributed Systems
Northwestern University

Server-initiated replicas

Keep track of access counts per file, aggregated by
considering server closest to requesting clients
Number of accesses < threshold D drop file
Number of accesses > threshold R replicate file
Number of access between D and R (and more
requests at P than at Q) migrate file to P

17

EECS 345 Distributed Systems
Northwestern University

Content distribution

Consider only a client-server combination
– Propagate only notification/invalidation of update
– Transfer data from one copy to another
– Propagate the update operation (aka active replication)

No single approach is the best, but depends on
available bandwidth and read-to-write ratio at replicas
Pushing/pulling updates:
– Push - server-initiated, update is propagated regardless

whether target asked for it
– Pulling - client-initiated, client requests to be updated

18

EECS 345 Distributed Systems
Northwestern University

Content distribution

Leases to dynamically switch bet/ pulling and pushing
– A contract in which the server promises to push updates to

the client until the lease expires

Make lease expiration time dependent on system’s
behavior (adaptive leases):
– Age-based: An object that hasn’t changed for a long time, will

not change in the near future, provide a long-lasting lease
– Renewal-frequency based: The more often a client requests a

specific object, the longer the expiration time for that client (for
that object) will be

– State-based: Higher load at servers, shorter expiration times

Unicasting or multicasting
– With push-based, multicasting may be a good idea
– With pull-based, unicast is your only reasonable model

19

EECS 345 Distributed Systems
Northwestern University

Consistency protocols – continuous

Bounding numerical deviations
– Replicas help to keep other replicas within bounds by pushing

updates, looking at what they think everybody has seen

Staleness can be done analogously, by essentially
keeping track of what has been seen last from Si
– Replica starts pulling writes soon as time diff. is exceeding

some limit

Bounding ordering deviations
– Caused by the fact that replica servers tentatively apply

updates submitted to them; each server has a local queue of
tentative writes, keep the length bounded

– When reaching limit, stop accepting writes and try to commit
the tentative writes by agreeing on some globally consistent
order

20

EECS 345 Distributed Systems
Northwestern University

Primary-based protocols

Primary-backup protocol – all writes are blocking,
forwarded to primary server; reads are local

The process that does the write may block for a long
while; but this is fault tolerant and easy to implement
A non-blocking approach trades fault tolerance for
performance

21

EECS 345 Distributed Systems
Northwestern University

Primary-based protocols

Primary-backup protocol with local writes – migrate
primary copy between processes that want to write
Multiple successive writes can be done locally
Can be applied to mobile computing, for operation
while being disconnected

22

EECS 345 Distributed Systems
Northwestern University

Replicated-write protocols

Write operations can be done at multiple replicas
Ensure that each operation is carried out in such a
way that a majority vote (quorum) is established;
distinguish read quorum and write quorum:
File is replicated on N servers
– Nr – read quorum; Nw – write quorum
– Nr + Nw < N (to prevent read/write conflicts); Nw > N/2 (to

prevent write-write conflicts)

23
This works

This may not

With ROWA – you can
read from one but must
write to all

EECS 345 Distributed Systems
Northwestern University

24

Summary

Again, we use replication for performance and
reliability
Replication, however, introduces a few issues
– The problem of consistency, which we may pay in terms of

performance
– The “details” of placement and management

	Consistency and Replication
	Performance and scalability
	Data-centric consistency models
	Continuous consistency
	Example - conit
	Sequential consistency
	Causal consistency
	Grouping operations – entry consistency
	Client-centric consistency models
	Client-centric consistency models
	Monotonic reads
	Monotonic writes
	Read your writes
	Writes follows reads
	Replica placement
	Content replication
	Server-initiated replicas
	Content distribution
	Content distribution
	Consistency protocols – continuous
	Primary-based protocols
	Primary-based protocols
	Replicated-write protocols
	Summary

