Flexible Update Propagation for
Weakly Consistent Replication

Karin Petersen, Mike J. Spreitzer,
Douglas B. Terry, Marvin M. Theimer,
Alan J. Demers

Features and Functionalities

* Support for arbitrary communication topologies:

the protocol provides the mechanism to propagate updates
between any two replicas. In turn, the theory of epidemics
ensures that these updates transitively propagate throughout
the system [3].

Operation over low-bandwidth nerworks:

reconciliation is based on the exchange of update operations
instead of full database contents, and only updates unknown to
the receiving replica are propagated.,

Incremental progress:

the protocol allows incremental progress even if interrupted,
for example, due to an involuntary network disconnection.
Eventual consistency:

each update eventually reaches every replica, and replicas
holding the same updates have the same database contents,

» Efficient storage management:

the protocol allows replicas to discard logged updates to
reclaim storage resources used for reconciliation.

= Propagation through transportable media;

one replica can send updates to another by storing the updates
on transportable media, like diskettes, without ever having to
establish a physical network connection.

* Light-weight management of dynamic replica sets:

the protocol supports the creation and retirement of a replica
through communication with only one available replica,
Arbitrary policy choices:

any policy choices for when to reconcile and with which
replicas to reconcile are supported by the anti-entropy
mechanism. The policy need only ensure that there be an
eventual communication path between any pair of replicas.

Anti-Entropy Algorithm

The simplest anti-entropy protocol can now be described. The
protocol is based on the following three design choices for the
reconciliation process:

1. itis a one-way operation between pairs of servers;
2. it occurs through the propagation of write operations, and
3. write propagation is constrained by the accept-order.

Anti-Entropy Algorithm

anti-entropy(S,R) {
Request R.V and R.CSN from receiving server R
#eheck if R's write-log does not Include all the necessary writes o only send writes or
commil notifications
IF (5.08N > R.C5N} THEN
Execule a full database rransfer
Roll back S’s database to the state comesponding to .0
SendDatabase(R, S.DB)
SendVector(R, 5.0) # this will be R's new B.O vector
SendCSN(R, 5.08N) # R's new R.OSN will now be 5.05N
END
now same algorithm as in Figure 2, send anything that R does not yet know about
IFR.CSN < 5.C5N THEN
w = first committed write that R does not vet know about
WHILE (w) DO
IF w.accept-stamp <= R.V(w.server-id) THEN
SendCommitNotification(R., w.accept-stamp, w.server-id, w.CSN}
ELSE
SendWrite(R, w)
END
w = next committed write in S.write-log
END
END
w = first tentative write in S.write-log
WHILE (w) DO
IF R.¥(w.server-id) < w.accept-stamp THEN
SendWrite(R, w)
w = next write in S.write-log
END
]

Figure 3. Aunti-entropy with support for write-log truncation (run at server S to update server R)

Anti-Entropy Algorithm

anti-entropy(S,R) {
Request R.V and R.CSN from receiving server R
#eheck if R's write-log does not Include all the necessary writes o only send writes or
commil notifications
IF (5.08N > R.C5N} THEN
Execule a full database rransfer
Roll back S’s database to the state comesponding to .0
SendDatabase(R, S.DB)
SendVector(R, 5.0) # this will be R's new B.O vector
SendCSN(R, 5.08N) # R's new R.OSN will now be 5.05N
END
now same algorithm as in Figure 2, send anything that R does not yet know about
IFR.CSN < 5.C5N THEN
w = first committed write that R does not vet know about
WHILE (w) DO
IF w.accept-stamp <= R.V(w.server-id) THEN
SendCommitNotification(R., w.accept-stamp, w.server-id, w.CSN}
ELSE
SendWrite(R, w)
END
w = next committed write in S.write-log
END
END
W = first fentative Wiite in =.wiiie-1og
WHILE (w) DO
IF R.V(w.server-id) < w.accept-stamp THEN I
SendWrite(R, w) bas I C
w = next write in S.write-log
END

}

Figure 3. Aunti-entropy with support for write-log truncation (run at server S to update server R)

Anti-Entropy Algorithm

anti-entropy(S,R) {
Request R.V and R.CSN from receiving server R
#eheck if R's write-log does not Include all the necessary writes o only send writes or
commil notifications
IF (5.08N > R.C5N} THEN
Execule a full database rransfer
Roll back S’s database to the state comesponding to .0
SendDatabase(R, S.DB)
SendVector(R, 5.0) # this will be R's new B.O vector
SendCSN(R, 5.08N) # R's new R.OSN will now be 5.05N
END
now same algorithm as in Figure 2, 3end anything ihal I does not yel know abour
IFR.CSN < 5.C5N THEN ;
w = first committed write that R does not vet know about CommlttEd
WHILE (w) DO :
IF w.accept-stamp <= R.V(w.server-id) THEN WIl tES
SendCommitNotification(R., w.accept-stamp, w.server-id, w.CSN}
ELSE
SendWrite(R, w)
END
w = next committed write in S.write-log
END
END
W = first fentative Wiite in =.wiiie-1og
WHILE (w) DO
IF R.V(w.server-id) < w.accept-stamp THEN I
SendWrite(R, w) bas I C
w = next write in S.write-log
END

}

Figure 3. Aunti-entropy with support for write-log truncation (run at server S to update server R)

Anti-Entropy Algorithm

anti-entropy(S,R) {

Request R.V and R.CSN from receiving server R
#eheck if R's write-log does not Include all the necessary writes o only send writes or I _

commil notifications WIT te | 0 g

IF (5.08M = R.CSN) THEN . T
Execule a full database rransfer tru ncatlon
Roll back S’s database to the state comesponding to .0
SendDatabase(R, S.DB)
SendVector(R, 5.0) # this will be R's new B.O vector
SendCSMN(R, 5.05N) # R's new R.OSN will now be 5.05N
END
now same algorithm as in Figure 2, 3end anything ihal I does not yel know abour
IF R.CSN < 5.CSN THEN ;
w = first committed write that R does not vet know about CommlttEd
WHILE (w) DO .
IF w.accept-stamp <= R.V(w.server-id) THEN WIl tES
SendCommitNotification(R., w.accept-stamp, w.server-id, w.CSN}
ELSE
SendWrite(R, w)
END
w = next committed write in S.write-log
END
END
W = first fentative Wiite in =.wiiie-1og
WHILE (w) DO
IF R.V(w.server-id) < w.accept-stamp THEN I
SendWrite(R, w) bas I C
w = next write in S.write-log
END

}

Figure 3. Aunti-entropy with support for write-log truncation (run at server S to update server R)

Anti-Entropy Algorithm

file-anti-entropy{filelD, CSN, V) {
QutputCSM(filelD, CSN);
OutputVector{fileID,V);
IF (S.0SN > CSN) THEN
Execute a full database rransfer
Roll back 575 database to the state corresponding to 5.0
OutputDatabase(file]D, 5.DB)
OutputVector(fileID, 5.0) # this will be the receiver’s new R.O vector
QutputCSN(fileID, S.0SN) # the receiver’s new R.OSN will now be S.0SN
CSN = 8.05N; # CSN now points to S.OSN, which will be the receiver's new CSN at this point
END
write anything that is not covered by CSN and V
IF CSN = 5.CSM THEN
w = first write following the write with commit sequence number = CSN
WHILE (w) DO
IF w.accept-stamp <=V{w.server-id) THEN
OutputCommitNotification(filzID, w.accept-stamp, w.server-id, w.CSN)
ELSE
OutputWrite(fileID, w)
END
w = next comnitied write in 8.write-log
END
END
w = first tentative write in S.write-log
WHILE (w) DO
IF V{w.server-id) < w.accept-stamp THEN
QutputWrite(fileID, w)
w = next wrile in S.write-log
END
OutputCSN(fileID,S.CSN);
QutpuiVector(fileID,5.V):

Figure 4. Off-line anti-entropy through transportable media (from § to a file)

Creation Writes

Server S, creates itself by sending a creation
write to another server S,, which handles it
like any client write

Write: <infinity, T, ;, $,>

Entry for S, added to version vectors

S;'s server-id: <T, ;, $;>

S; initializes accept-stamp counter with T, +1

Creation Writes

Note that the recursive nature of the server identifiers affects the
size of the version vectors. At one end, if all servers are created
from the first replica for the database, all server identifiers will
contain only one level of recursion and thus be short, On the other
hand, if replicas are created linearly, one from the next, server
identifiers will be increasingly longer, and the version vectors for
such a database will therefore also be much larger.

Retirement Writes

* When server wants to die, it issues retirement
write to itself (also like any other write), stops
accepting client writes

* Must stay alive until it performs anti-entropy
with > 1 other server

* When server receives retirement write,
updates version vectors

Logically Complete Version Vectors

More precisely, a server 3; may be absent from another server’s
version vector for two reasons: either the server never heard about
Sy's creation, or it knows that S; was created and subsequently
destroyed, Fortunately, the recursive nature of server identifiers in
Bayou allows any server to determine which case holds. Consider
the scenario in which R sends S its version vectors during anti-
entropy, and R is missing an entry for §; = <Ty;, Si> There are
two possible cases:

If R.V(Sy) 2 Ty, then server R has seen Sp's creation write;
in this case, the abgence of S; from R.V means that R has
also seen Sy's retirement. S can safely assume R knows that
server S; is defunct, and does not need to send any new
writes accepted by S;to R.

If R.V(Sy) < Tk, then server R has not yet seen Sis creation
write, and thus cannot have seen the retircment cither. S
therefore needs to send R all the writes it knows that have
been accepted by 5.

Note that this scenario assumes that R.V includes an entry for
Sy Since multiple servers may retire or be created around the
same time, R's version vector may be missing entries for both §;
and S in the example used above. Fortunately, the presence of an
entry for Sy is not essential to identify retired servers. The solution
is based on the recursive nature of the server identifiers. Imagine a
CompleteV vector that extends the information stored in the V
vector to include timestamp entries for all possible servers. A
recursive function can compute entries for this extended vector:

CompleteV(S; = <Ty;, S>) =

V(S) if explicitly available
plus infinity if ;= 0, the first server
plus infinity if CompleteV(Sy) = Ty
minus infinity if CompleteV(Sy) < Ty;

A value of minus infinity indicates that the server has not yet
seen Sy's creation write, and plus infinity indicates that the server
has seen both 8;'s creation and retirement writes. A server can use
the CompleteV function as defined above to always correctly
determine which writes to send during anti-entropy.

Features

Faature\ Design Choices ﬂ“";?,i tl:“"' Operation- PmP::IgJ:tlTvnn 'Frnc:nl;i]lllnn Lfg“fr‘:t:nx
- Order Order —
Arhi.traly Communication Topologies +
Asbitrary Policy Choices L
Low-handwidth Metworks
Incremental Progress . * *
Eventual Consistency Q"
Ageressive Storage Management &+
Use of Transportable Media * 2
Light-weight Dynamic Replica Sets * * &
Per Update Conflict Management
Session Guarantees &

Table 1: Features enabled by specific anti-entropy design components

* Small marks indicate that the feature is facilitated by the design choice, but does not depend on it.
*» Eveniual consistency can be supporied with the fncremental protocol by eliher establishing a wial order on ol updowes, making vperions

commutative, or by enforcing a total order on the propagation of updates thar are part of the stable prefix.

Disadvantages

* 1 vector for each replica — inefficient when
number of replicas > update activity

e Must retain all tentative writes until commit —
inefficient when update activity > commit rate

Anti-Entropy Policies

When to reconcile
With which replicas to reconcile
How aggressively to truncate the write-log

Selecting a server from which to create a new
replica

Performance Evaluation

g

g & 8

'8 B

g

Anti-eniropy execution time in seconds
b &
© o

-
o

%0 s 100 10 200 25 a0 0% 400 450 500
) Humber of writes propagated
Figure 5. Anti-entropy execution as a function of the number of writes propagated -

. (each write corresponds to one mail message)

Performance Evaluation

158
5 140 = E othor
.§ o At the receiver:
E 1 - Y apply new writes to database
_ﬁ 0 C—= insert new writes in writelog
= 7] On the network:
= i = KPC marshalling .
2 s c-mail message related data
& 40— public key for access control
g ——= update schema information and padding
= [Anti-entropy setup:
L - = authentication
- 105 e FFC initalization
E E 1.67 7.16 sa2
. ==
58> 486 485 486 486 88 55
Net: modem modem enet enst enet enet
bytes/megm: 3000 100 3000 100 3000 100

Figure 6. Anti-entropy execution time breakdown for the propagation of 100 writes
(standard deviations on all total times are within 2 2% of the reported numbers)

Performance Evaluation

% 3.79

g 3.47

i3 e ciher

% 3 At the receivers

g BEWY apply new writes 1o database
=3 2,21 217 insert new writes in writelog:
5 2 L95 V @SN transaction opendclose
E ~ % 1 write to disk

a & L L1 — mar:-h_all)

R _—_— - — canonicalize

= — E At the sender:

= — identify writes to send
=

£ 0

5 85> 486 486 486 486 S5 ss

Met: modem modem enet enet ener enet
bytes/msg: 3000 100 3000 100 3000 100

Figure 7. Network independent anti-entropy algorithm components for the propagation of 100 writes
(standard deviations on all total times are within 2.9% of the reported numbers)

Anti-entropy time in seconds

Performance Evaluation

a. Minimal server IDs

"™ 'Numberofreplicas T 7

Anti-entropy time in seconds

b. Maximal server IDs

| e

e

“ " Humf:i‘ér of IEBEIII:ES = =

Figure 8. Anti-entropy execution time for 100 writes as a function of the number of replicas

