
Today
Physical and Logical clocks
Mutual exclusion
Election algorithms

Synchronization

EECS 345 Distributed Systems
Northwestern University

Physical clocks

Sometimes we need the exact time
Universal Coordinated Time (UTC):
– Based on the number of transitions per second of the cesium

133 atom (pretty accurate).
– At present, the real time is taken as the average of some 50

cesium-clocks around the world.
– Introduces a leap second from time to time to compensate

that days are getting longer.

UTC is broadcast through short wave radio & satellite.
Satellites can give an accuracy of about ±0.5 ms.
We want to distribute this to a bunch of machines
– Each runs its own timer, keeping a clock Cp(t) (t being UTC)
– Ideally we want Cp(t) = t for all processes, i.e. dC/dt = 1

2

EECS 345 Distributed Systems
Northwestern University

Physical clocks

However, 1− r ≤ dC/dt ≤ 1+ r

Goal: Never let two clocks in any system differ by
more than d time units synchronize at least every
d/(2r) seconds.

3

EECS 345 Distributed Systems
Northwestern University

Clock synchronization

Model 1 – Every machine asks a time server for the
accurate time at least once every d/(2r) seconds
(Network Time Protocol)
– You need an accurate measure of round trip delay, including

interrupt handling and processing incoming messages.

Model 2 – Let the time server scan all machines
periodically, calculate an average, and inform each
machine how it should adjust its time relative to its
present time.
– Note you don’t even need to propagate UTC time.

You’ll have to take into account that setting the time
back is never allowed smooth adjustments

4

EECS 345 Distributed Systems
Northwestern University

Happened-before relationship

We first need to introduce a notion of ordering before
we can order anything.
The happened-before relation on the set of events in a
distributed system:
– If a and b are two events in the same process, and a comes

before b, then a→b.
– If a is the sending of a message, and b is the receipt of that

message, then a→b
– If a→b and b→c, then a→c

Note: this introduces a partial ordering of events in a
system with concurrently operating processes.

5

EECS 345 Distributed Systems
Northwestern University

Lamport clock

How do we maintain a global view on the system’s
behavior that is consistent with the happened before
relation?
Attach a timestamp C(e) to each event e, satisfying
the following properties:
– P1: If a and b are two events in the same process, and a→b,

then we demand that C(a) < C(b).
– P2: If a corresponds to sending a message m, and b to the

receipt of that message, then also C(a) < C(b).

How to attach a timestamp to an event when there’s
no global clock maintain a consistent set of logical
clocks, one per process.

6

EECS 345 Distributed Systems
Northwestern University

Lamport clock

Each process Pi maintains a local counter Ci and
adjusts this counter according to the following rules:
– 1: For any two successive events that take place within Pi, Ci

is incremented by 1.
– 2: Each time a message m is sent by process Pi, the message

receives a timestamp ts(m) = Ci.
– 3: Whenever a message m is received by a process Pj, Pj

adjusts its local counter Cj to max(Cj, ts(m)); then executes
step 1 before passing m to the application.

Property 1 is satisfied by (1);
Property 2 by (2) and (3).
Note: it can still occur that two events happen at the
same time. Avoid this by breaking ties through process
IDs.

7

EECS 345 Distributed Systems
Northwestern University

Lamport clock - an example

8

EECS 345 Distributed Systems
Northwestern University

Example use – totally ordered multicast

We sometimes need to guarantee that concurrent
updates on a replicated database are seen in the
same order everywhere:
– P1 adds $100 to an account (initial value: $1000)
– P2 increments account by 1%
– There are two replicas

Result: in absence of proper synchronization: replica #1
← $1111, while replica #2 ← $1110.

9

EECS 345 Distributed Systems
Northwestern University

Totally ordered multicast

Solution:
– Process Pi sends timestamped message msgi to all others.

The message itself is put in a local queue queuei

– Any incoming message at Pj is queued in queuej, according to
its timestamp, and acknowledged to every other process

– Pj passes a message msgi to its application if:
• (1) msgi is at the head of queuej

• (2) for each process Pk, there is a message msgk in queuej with a
larger timestamp

Note: We are assuming that communication is reliable
and FIFO ordered.

10

EECS 345 Distributed Systems
Northwestern University

Vector clocks

Observation: Lamport’s clocks do not guarantee that if
C(a) < C(b) that a causally preceded b:
Observation:
– Event a: m1 is received at T = 16
– Event b: m3 is sent at T = 32
– The sending of m3 may have

been affected by m1

But,
– Event a: m1 is received at T = 16
– Event b: m2 is sent at T = 20
– We cannot conclude that a

causally precedes b

11

EECS 345 Distributed Systems
Northwestern University

Vector clocks

Solution:
– Each process Pi has an array VCi[1..n], where VCi[j] denotes

the number of events that process Pi knows have taken place
at process Pj

– When Pi sends a message m, it adds 1 to VCi[i], and sends
VCi along with m as vector timestamp vt(m). Result: upon
arrival, recipient knows Pi’s timestamp.

– When a process Pj delivers a message m that it received from
Pi with vector timestamp ts(m), it

• (1) updates each VCj[k] to max{VCj[k], ts(m)[k]}
• (2) increments VCj[j] by 1.

Question: What does VCi[j] = k mean in terms of
messages sent and received?

12

EECS 345 Distributed Systems
Northwestern University

Causally ordered multicasting

We can now ensure that a msg is delivered only if all
causally preceding msgs have already been delivered
Adjustment: Pi increments VCi[i] only when sending a
message, and Pj “adjusts” VCj when receiving a
message (i.e., effectively does not change VCj[j])
Pj postpones delivery of m until:
– ts(m)[i] = VCj[i] + 1
– ts(m)[k] ≤ VCj[k] for k != j

13

EECS 345 Distributed Systems
Northwestern University

Mutual exclusion

Processes want exclusive access to some resource
Basic solutions,
– Via a centralized server.
– Completely decentralized, using a peer-to-peer system.
– Completely distributed, with no topology imposed.
– Completely distributed along a (logical) ring.

Centralized:
– Good – It works, is easy to implement; takes few messages
– Bad – Central point of failure & potential bottleneck

14

EECS 345 Distributed Systems
Northwestern University

Decentralized algorithm

Assume every resource is replicated n times, with
each replica having its own coordinator access
requires a majority vote from m > n/2 coordinators
A coordinator always responds immediately to a
request (either way)
Assumption – When a coordinator crashes, it will
recover quickly, but will have forgotten about
permissions it had granted
Good – Very low probability of violating correctness
Bad – With high contention may come low utilization

15

EECS 345 Distributed Systems
Northwestern University

Distributed algorithm

The same as Lamport except that acknowledgments
aren’t sent. Instead, replies (i.e. grants) are sent only
when:
– The receiving process has no interest in the resource; or
– The receiving process is waiting for the resource, but has

lower priority (known through comparison of timestamps).

In all other cases, reply is deferred, implying some
more local administration.

16

EECS 345 Distributed Systems
Northwestern University

Token-based

Organize processes in a logical ring, and let a token
be passed between them. The one that holds the
token is allowed to enter the critical region (if it wants
to)

17

EECS 345 Distributed Systems
Northwestern University

Comparing the different algorithms

18

EECS 345 Distributed Systems
Northwestern University

Global positioning of nodes

How can a single node efficiently estimate the latency
between any two other nodes in a distributed system?
Construct a geometric overlay network, in which the
distance d(P,Q) reflects the actual latency between P
and Q.

19

A node P needs k + 1 landmarks
to compute its own position in a d-
dimensional space

In 2d, P needs to solve three
equations in two unknowns (xP, yP):

22)()(PiPii yyxxd −+−=

d1

d2

d3

(x2,y2)

(x1,y1)

(x3,y3)

P

EECS 345 Distributed Systems
Northwestern University

Global positioning of nodes

di generally corresponds to latency, estimated as half
the round-trip delay
But latency changes over time, and “error” propagates
Considering that Internet latency generally violates the
triangle inequality (d(P,R) ≤ d(P,Q) + d(Q,R))
it’s generally impossible to fix all inconsistencies
A few ways to address this
– Use special nodes, landmarks, and compute coordinates to

minimize aggregated errors (GNP)
– See networks as nodes connected by springs, the error being

their relative displacement from rest (Vivaldi)
– Avoid embedding errors with direct measurement (Meridian)
– Reuse the network view of others, such as CDNs (CRP)

20

EECS 345 Distributed Systems
Northwestern University

Election algorithms

Many distributed algorithms require one process to act
as coordinator
In general, it doesn’t matter which one – so pick the
one with the largest ID/weight
We assume every process knows the identity of all
other processes, just not who is up/down
Elections conclude when all agree on new coordinator

21

EECS 345 Distributed Systems
Northwestern University

The Bully algorithm

22

2

4

0

7

1
5

6

3

Somebody, P, notice coordinator is
down and calls an election
P sends ELECTION message to all
processes with higher numbers
If no-one responds, P is the winner
If a process with a higher number
receives the ELECTION message,
reply with OK and calls an election
When done, winner let everybody
know with a COORDINATOR
message
If 7 ever wakes up, it will call for
elections

Garcia-Molina, ‘82

Election OK
Election

OK

Coordinator

EECS 345 Distributed Systems
Northwestern University

A ring algorithm

23

2

1

0

7

3
4

5

6

Somebody, P, notice coordinator is
down and calls an election
P sends ELECTION message with its
number in to first successor up
Recipient forward messages adding
itself as candidate
Who started it all, will eventually
receive a message with itself in the
list; elect coordinator and inform all
COORDINATOR messages goes
around the ring once

[4,5]

[4]

[4,5,6]
[4,5,6,0]

[4,5,6,0,1]

[4,5,6,0,1,2]
[4,5,6,0,1,2,3]

Coordinator - 6

EECS 345 Distributed Systems
Northwestern University

Election in large-scale systems

Electing superpeers in a P2P system; requirements
– Normal nodes should have low latency access to superpeers
– Superpeers should be evenly distributed through the overlay
– There should be a predefined % of superpeers
– Each superpeer should serve no more than a fix # of normal

peers

In a DHT-based system, pick the first k bits to identify
a superpeer; if S superpeers, k = log2 S
– Need to route to node responsible for key p? (With k = 3) Go

to p AND 111000…

To position N nodes evenly in a m-dim space
– Distribute N tokens to randomly nodes; tokens repel each

other; use gossiping to disseminate tokens’ forces; holder is
superpeer

24

EECS 345 Distributed Systems
Northwestern University

Election in wireless environments

Traditional algorithms make assumptions not realistic
in wireless settings (e.g. message passing is reliable)
Elect the “best” leader based on dynamic tree
construction
Election messages are tagged with unique ID to deal
with concurrent elections

25

EECS 345 Distributed Systems
Northwestern University

Election in wireless environments

When a node receives an election message for the
first time, it select source as parent and forwards the
message

26

EECS 345 Distributed Systems
Northwestern University

Election in wireless environments

Leaf nodes report to parent with their capacity
Children pass the most eligible node up the tree

27

`

EECS 345 Distributed Systems
Northwestern University

28

Summary

Synchronization is about doing the right thing at the
right time …
What’s the right time?
– An issue when you don’t share clocks

What’s the right thing to do?
– Who can access what when?
– Who is in charge?

	Synchronization
	Physical clocks
	Physical clocks
	Clock synchronization
	Happened-before relationship
	Lamport clock
	Lamport clock
	Lamport clock - an example
	Example use – totally ordered multicast
	Totally ordered multicast
	Vector clocks
	Vector clocks
	Causally ordered multicasting
	Mutual exclusion
	Decentralized algorithm
	Distributed algorithm
	Token-based
	Comparing the different algorithms
	Global positioning of nodes
	Global positioning of nodes
	Election algorithms
	The Bully algorithm
	A ring algorithm
	Election in large-scale systems
	Election in wireless environments
	Election in wireless environments
	Election in wireless environments
	Summary

