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Physical clocks

Sometimes we need the exact time
Universal Coordinated Time (UTC):
– Based on the number of transitions per second of the cesium 

133 atom (pretty accurate).
– At present, the real time is taken as the average of some 50 

cesium-clocks around the world.
– Introduces a leap second from time to time to compensate 

that days are getting longer.

UTC is broadcast through short wave radio & satellite. 
Satellites can give an accuracy of about ±0.5 ms.
We want to distribute this to a bunch of machines
– Each runs its own timer, keeping a clock Cp(t) (t being UTC)
– Ideally we want Cp(t) = t for all processes, i.e. dC/dt = 1
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Physical clocks

However, 1− r ≤ dC/dt ≤ 1+ r

Goal: Never let two clocks in any system differ by 
more than d time units synchronize at least every 
d/(2r) seconds.
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Clock synchronization

Model 1 – Every machine asks a time server for the 
accurate time at least once every d/(2r) seconds 
(Network Time Protocol)
– You need an accurate measure of round trip delay, including 

interrupt handling and processing incoming messages.

Model 2 – Let the time server scan all machines 
periodically, calculate an average, and inform each 
machine how it should adjust its time relative to its 
present time.
– Note you don’t even need to propagate UTC time.

You’ll have to take into account that setting the time 
back is never allowed smooth adjustments
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Happened-before relationship

We first need to introduce a notion of ordering before 
we can order anything.
The happened-before relation on the set of events in a 
distributed system:
– If a and b are two events in the same process, and a comes 

before b, then a→b.
– If a is the sending of a message, and b is the receipt of that 

message, then a→b
– If a→b and b→c, then a→c

Note: this introduces a partial ordering of events in a 
system with concurrently operating processes.
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Lamport clock

How do we maintain a global view on the system’s 
behavior that is consistent with the happened before 
relation?
Attach a timestamp C(e) to each event e, satisfying 
the following properties:
– P1: If a and b are two events in the same process, and a→b, 

then we demand that C(a) < C(b).
– P2: If a corresponds to sending a message m, and b to the 

receipt of that message, then also C(a) < C(b).

How to attach a timestamp to an event when there’s 
no global clock maintain a consistent set of logical 
clocks, one per process.
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Lamport clock

Each process Pi maintains a local counter Ci and 
adjusts this counter according to the following rules:
– 1: For any two successive events that take place within Pi, Ci

is incremented by 1.
– 2: Each time a message m is sent by process Pi, the message 

receives a timestamp ts(m) = Ci.
– 3: Whenever a message m is received by a process Pj, Pj

adjusts its local counter Cj to max(Cj, ts(m)); then executes 
step 1 before passing m to the application.

Property 1 is satisfied by (1);
Property 2 by (2) and (3).
Note: it can still occur that two events happen at the 
same time. Avoid this by breaking ties through process 
IDs.
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Lamport clock - an example
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Example use – totally ordered multicast

We sometimes need to guarantee that concurrent 
updates on a replicated database are seen in the 
same order everywhere:
– P1 adds $100 to an account (initial value: $1000)
– P2 increments account by 1%
– There are two replicas

Result: in absence of proper synchronization: replica #1 
← $1111, while replica #2 ← $1110.
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Totally ordered multicast

Solution:
– Process Pi sends timestamped message msgi to all others. 

The message itself is put in a local queue queuei

– Any incoming message at Pj is queued in queuej, according to 
its timestamp, and acknowledged to every other process

– Pj passes a message msgi to its application if: 
• (1) msgi is at the head of queuej

• (2) for each process Pk, there is a message msgk in queuej with a 
larger timestamp

Note: We are assuming that communication is reliable 
and FIFO ordered.
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Vector clocks

Observation: Lamport’s clocks do not guarantee that if 
C(a) < C(b) that a causally preceded b:
Observation:
– Event a: m1 is received at T = 16
– Event b: m3 is sent at T = 32
– The sending of m3 may have 

been affected by m1

But,
– Event a: m1 is received at T = 16
– Event b: m2 is sent at T = 20
– We cannot conclude that a 

causally precedes b
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Vector clocks

Solution:
– Each process Pi has an array VCi[1..n], where VCi[j] denotes 

the number of events that process Pi knows have taken place 
at process Pj

– When Pi sends a message m, it adds 1 to VCi[i], and sends 
VCi along with m as vector timestamp vt(m). Result: upon 
arrival, recipient knows Pi’s timestamp.

– When a process Pj delivers a message m that it received from 
Pi with vector timestamp ts(m), it

• (1) updates each VCj[k] to max{VCj[k], ts(m)[k]}
• (2) increments VCj[j] by 1.

Question: What does VCi[j] = k mean in terms of 
messages sent and received?
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Causally ordered multicasting

We can now ensure that a msg is delivered only if all 
causally preceding msgs have already been delivered
Adjustment: Pi increments VCi[i] only when sending a 
message, and Pj “adjusts” VCj when receiving a 
message (i.e., effectively does not change VCj[j])
Pj postpones delivery of m until:
– ts(m)[i] = VCj[i] + 1
– ts(m)[k] ≤ VCj[k] for k != j
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Mutual exclusion

Processes want exclusive access to some resource
Basic solutions, 
– Via a centralized server.
– Completely decentralized, using a peer-to-peer system.
– Completely distributed, with no topology imposed.
– Completely distributed along a (logical) ring.

Centralized:
– Good – It works, is easy to implement; takes few messages
– Bad – Central point of failure & potential bottleneck
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Decentralized algorithm

Assume every resource is replicated n times, with 
each replica having its own coordinator access 
requires a majority vote from m > n/2 coordinators
A coordinator always responds immediately to a 
request (either way)
Assumption – When a coordinator crashes, it will 
recover quickly, but will have forgotten about 
permissions it had granted
Good – Very low probability of violating correctness
Bad – With high contention may come low utilization
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Distributed algorithm

The same as Lamport except that acknowledgments 
aren’t sent. Instead, replies (i.e. grants) are sent only 
when:
– The receiving process has no interest in the resource; or
– The receiving process is waiting for the resource, but has 

lower priority (known through comparison of timestamps).

In all other cases, reply is deferred, implying some 
more local administration.
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Token-based

Organize processes in a logical ring, and let a token 
be passed between them. The one that holds the 
token is allowed to enter the critical region (if it wants 
to)
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Comparing the different algorithms
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Global positioning of nodes

How can a single node efficiently estimate the latency 
between any two other nodes in a distributed system?
Construct a geometric overlay network, in which the 
distance d(P,Q) reflects the actual latency between P 
and Q.

19

A node P needs k + 1 landmarks 
to compute its own position in a d-
dimensional space

In 2d, P needs to solve three 
equations in two unknowns (xP, yP):
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Global positioning of nodes

di generally corresponds to latency, estimated as half 
the round-trip delay
But latency changes over time, and “error” propagates
Considering that Internet latency generally violates the 
triangle inequality ( d(P,R) ≤ d(P,Q) + d(Q,R) )
it’s generally impossible to fix all inconsistencies
A few ways to address this
– Use special nodes, landmarks, and compute coordinates to 

minimize aggregated errors (GNP)
– See networks as nodes connected by springs, the error being 

their relative displacement from rest (Vivaldi)
– Avoid embedding errors with direct measurement (Meridian)
– Reuse the network view of others, such as CDNs (CRP) 
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Election algorithms

Many distributed algorithms require one process to act 
as coordinator
In general, it doesn’t matter which one – so pick the 
one with the largest ID/weight
We assume every process knows the identity of all 
other processes, just not who is up/down
Elections conclude when all agree on new coordinator
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The Bully algorithm
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Somebody, P, notice coordinator is 
down and calls an election
P sends ELECTION message to all 
processes with higher numbers
If no-one responds, P is the winner
If a process with a higher number 
receives the ELECTION message, 
reply with OK and calls an election
When done, winner let everybody 
know with a COORDINATOR 
message
If 7 ever wakes up, it will call for 
elections

Garcia-Molina, ‘82
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A ring algorithm
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Somebody, P, notice coordinator is 
down and calls an election
P sends ELECTION message with its 
number in to first successor up
Recipient forward messages adding 
itself as candidate
Who started it all, will eventually 
receive a message with itself in the 
list; elect coordinator and inform all
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around the ring once
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Election in large-scale systems

Electing superpeers in a P2P system; requirements
– Normal nodes should have low latency access to superpeers
– Superpeers should be evenly distributed through the overlay
– There should be a predefined % of superpeers
– Each superpeer should serve no more than a fix # of normal 

peers

In a DHT-based system, pick the first k bits to identify 
a superpeer; if S superpeers, k = log2 S
– Need to route to node responsible for key p? (With k = 3) Go 

to p AND 111000…

To position N nodes evenly in a m-dim space
– Distribute N tokens to randomly nodes; tokens repel each 

other; use gossiping to disseminate tokens’ forces; holder is 
superpeer
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Election in wireless environments

Traditional algorithms make assumptions not realistic 
in wireless settings (e.g. message passing is reliable)
Elect the “best” leader based on dynamic tree 
construction
Election messages are tagged with unique ID  to deal 
with concurrent elections
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Election in wireless environments

When a node receives an election message for the 
first time, it select source as parent and forwards the 
message
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Election in wireless environments

Leaf nodes report to parent with their capacity
Children pass the most eligible node up the tree
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Summary

Synchronization is about doing the right thing at the 
right time …
What’s the right time? 
– An issue when you don’t share clocks

What’s the right thing to do?
– Who can access what when?
– Who is in charge?
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