
Time, Clocks, and the Ordering of Events
in a Distributed System

Leslie Lamport
Massachusetts Computer Associates, Inc.

Presented J. Scott Miller

Event relationship framework

● A distributed system is thought of as a collection of processes on
which a series of events occur

● Event a can be said to happen before b (a→b) under three
conditions
– If a and b are on the same process and a precedes b then a→b
– If a is the sending of a message by one process and b is the

receipt of that message by another process then a→b
– If a→b and b→c then a→c

● Events for which a!→b and b!→a are said to be concurrent
● If a→b, there is a potential causal relationship between a and b

Event relationship framework
(cont).
● Graphically, a→b means that we can

traverse a space-time diagram from a
to b
– e.g. p1→r3

● Knowing that a→b means a possible
causal relationship exists between
those events

Logical clocks

● A logical clock assigns increasing numbers to each event,
regardless of physical time

● If a→b then C(a) < C(b)
● Clock is maintained according to two rules

– Each process increments C between any two events
– Messages are timestamped with C at the sender, and the receiver

much set its C to be greater than the timestamp

Total ordering

● An ordering of all system events can be achieved using the logical
clock value and a process specific, unique value

● Event a on process i precedes event b on process j if either:
– Ci(a) < Cj(b)
– Ci(a) = Cj(b) and Pi < Pj

Application: Resource Reservation

● Need to ensure exclusive access to certain system resources
– e.g., atomic write access to a shared file

● Access should be granted in request order
● Processes should not be starved – the resource should eventually be

released

Application: Resource Reservation
(cont)
● To request a resource, a process sends a timestamped message to

every other process to announce its intention
● Upon receiving a request, the process adds it to a private request

queue
● When a resource is released, a process removes itself from its

request queue and broadcasts a releases resource message –
processes receiving this message do the same

● A process is granted the resource when it has a message requesting
that resource in its queue ordered before any other request and has
received a message from every other process timestamped later than
the request message

Application: Resource Reservation
(cont)
● Result is totally distributed
● Requires reliable, in-order messaging
● Each process retains state for all other processes
● Unresponsive or failing nodes need to be quickly discovered and

their requests removed

Anomalous Behavior

● The total ordering introduced so far only to events and messages
that occur within the system

● Messages transmitted outside of the system that result in an event
might chronologically follow while logically preceding another
event in the system
– e.g., Phone call resulting in an event

● Two solutions
– Include all possible events and messages in the system
– Use a clock that can encapsulate outside effects

Physical clocks

● For a perfect physical clock, dC(t)/dt = 1
● κ is defined as the maximum clock error, |dC(t)/dt – 1| < κ
● ε is defined as the maximum difference between process clocks, for

all i, j: |Ci(t) – Cj(t)| < ε
● μ is defined as the shortest allowable time between two events on

remote processes, essentially the shortest possible transmission time
● Anomalous behavior is thus impossible if ε/(1 – κ) <= μ
● Given a dense group of nodes, it is proved that this synchronization

can be achieved with periodic messaging and a bounds on the
unpredictable message delay

