Distributed Snapshots: Determining
Global States of Distributed Systems

I by K. Mani Chandy and Leslie Lamport
Presenter: lonut Trestian

I Why Is this useful?

Many problems in distributed systems can be
cast as a problem of detecting global states.
Example: stable property detection.

Stable properties are ones that persist, once
It becomes true it stays true thereatfter.
Global state detection can be used for check
pointing.

Examples

- “computation has terminated”

- “the system is deadlocked”
- “all tokens in a ring have disappeared

I Determining Global state-Issues

» Processes communicate by sending and
I receiving messages

« A process can record its own state and the
messages it sends and receives, nothing
else.

« To determine global systems state all
processes must record their state and send it
the recorded local state to a process p.

» Problem: this must be synchronized
(common clock)

I Determining global state-Issues

« Current algorithms which determine the global state
I of a system to solve deadlock and termination
problems seem incorrect and impractical.

. Mainly because the relationships among local
process states, global system states and points in a
distributed computation are not well understood

« Distributed algorithms consist of a sequence of
phases

- A transient part in which useful work is done
- A stable part in which the system cycles
endlessly

Distributed System Model

A distributed system consists

of a finite set of processes and

a finite set of channels.

No failures and all messages =l
arrive intact.

Communication channels are
unidirectional and FIFO
ordered. They also have
Infinite buffers. Delays on the
channel are arbitrary but finite.
Processes are defined by an
Initial state, a set of states and
a set of events.

process

C3 channel

c

> receive token
process
- sO
c

sand tokan

channel

I Distributed System - Example
| ©

in transit

global state: token in p glebal state: token in C
——— e = —— — — —_—
| _‘ [_ |
|$I mp‘ty sD' so token sOl
: emmy | empty |

- _ - _
global state: token in G’ global state: token in q
I B - 1
|sO empty 30: |sO empty sl I
' H— I~ H_ |
I token] I

Distributed System - Example

initial global

send M empty state SO
initial { A ’@ @ @
receive M’ state A empty state C
send M’ 1 p sends M
initial @ —@
raceive M M
q gicbal state S1

empty c

g sends M’

M
@ global state S2
M’ D
p receives M’
M

@ global state 53

empty D

C
©)
©O)

I Algorithm — Considerations

Each process records its own state

Two processes that a channel Is incident on
cooperate to record the channel state.
Process and channel state must form a
meaningful state.

Computations required to record state must
not interfere with underlying computations.

Algorithm - Discussion

(e

G - receive token
process 50
EI‘

channel

global state: token in p

send tokan

in transit

gloebal state: token in C
————————— —_— e — — o —

|

| sl empty sD' |50 token sOl
| o—o —(|
: empty | empty |

T |

:_ ________] T 1
|sO empty SG: so empty sl I
' H— I~ H_ |
I token] I

s|

Algorithm outline

. Marker sending rule
- Marker receiving rule

p sends one marker along c after p records its state and before p sends further messages
along c.

if ¢ has not recorded its state then
begin g records its state;
g records the state ¢ as the empty sequence
end

else ¢ records the state of ¢ as the sequence of messages received along c after ¢'s state
was recorded and before g received the marker along c.

I Algorithm - Results

ttttt

- Prerecording event O emoty
I » Postrecording event e oty ©... c

eeeee

icbal s
global state s2
global state &a

I Stability detection

» Output = a Boolean variable definite with the
property:
- y(SI1) => definite and definite => y(So0)
» Algorithm:
- Begin
- record a global state S*
- Definite => y(S*)
- end

I . Input = a stable property y

Thank you !
Questions?

