
Distributed Snapshots: Determining 
Global States of Distributed Systems

by K. Mani Chandy and Leslie Lamport

Presenter: Ionut Trestian



Why is this useful?

 Many problems in distributed systems can be 
cast as a problem of detecting global states.

 Example: stable property detection.
 Stable properties are ones that persist, once 

it becomes true it stays true thereafter.
 Global state detection can be used for check 

pointing.
 Examples

 “computation has terminated”
 “the system is deadlocked”
 “all tokens in a ring have disappeared



Determining Global state-Issues

 Processes communicate by sending and 
receiving messages

 A process can record its own state and the 
messages it sends and receives, nothing 
else. 

 To determine global systems state all 
processes must record their state and send it 
the recorded local state to a process p.

 Problem: this must be synchronized 
(common clock) 



Determining global state-Issues

 Current algorithms which determine the global state 
of a system to solve deadlock and termination 
problems seem incorrect and impractical.

 Mainly because the relationships among local 
process states, global system states and points in a 
distributed computation are not well understood

 Distributed algorithms consist of a sequence of 
phases
 A transient part in which useful work is done
 A stable part in which the system cycles 

endlessly



Distributed System Model

 A distributed system consists 
of a finite set of processes and 
a finite set of channels. 

 No failures and all messages 
arrive intact.

 Communication channels are 
unidirectional and FIFO 
ordered. They also have 
infinite buffers. Delays on the 
channel are arbitrary but finite.

 Processes are defined by an 
initial state, a set of states and 
a set of events.



Distributed System - Example



Distributed System - Example



Algorithm – Considerations

 Each process records its own state
 Two processes that a channel is incident on 

cooperate to record the channel state.
 Process and channel state must form a 

meaningful state.
 Computations required to record state must 

not interfere with underlying computations.



Algorithm - Discussion



Algorithm outline

 Marker sending rule
 Marker receiving rule



Algorithm - Results

 Prerecording event
 Postrecording event



Stability detection

 Input = a stable property y
 Output = a Boolean variable definite with the 

property:
 y(Si) => definite and definite => y(So) 

 Algorithm:
 Begin
 record a global state S*
 Definite => y(S*) 
 end



Thank you !

Questions?


