
Distributed Snapshots: Determining 
Global States of Distributed Systems

by K. Mani Chandy and Leslie Lamport

Presenter: Ionut Trestian



Why is this useful?

 Many problems in distributed systems can be 
cast as a problem of detecting global states.

 Example: stable property detection.
 Stable properties are ones that persist, once 

it becomes true it stays true thereafter.
 Global state detection can be used for check 

pointing.
 Examples

 “computation has terminated”
 “the system is deadlocked”
 “all tokens in a ring have disappeared



Determining Global state-Issues

 Processes communicate by sending and 
receiving messages

 A process can record its own state and the 
messages it sends and receives, nothing 
else. 

 To determine global systems state all 
processes must record their state and send it 
the recorded local state to a process p.

 Problem: this must be synchronized 
(common clock) 



Determining global state-Issues

 Current algorithms which determine the global state 
of a system to solve deadlock and termination 
problems seem incorrect and impractical.

 Mainly because the relationships among local 
process states, global system states and points in a 
distributed computation are not well understood

 Distributed algorithms consist of a sequence of 
phases
 A transient part in which useful work is done
 A stable part in which the system cycles 

endlessly



Distributed System Model

 A distributed system consists 
of a finite set of processes and 
a finite set of channels. 

 No failures and all messages 
arrive intact.

 Communication channels are 
unidirectional and FIFO 
ordered. They also have 
infinite buffers. Delays on the 
channel are arbitrary but finite.

 Processes are defined by an 
initial state, a set of states and 
a set of events.



Distributed System - Example



Distributed System - Example



Algorithm – Considerations

 Each process records its own state
 Two processes that a channel is incident on 

cooperate to record the channel state.
 Process and channel state must form a 

meaningful state.
 Computations required to record state must 

not interfere with underlying computations.



Algorithm - Discussion



Algorithm outline

 Marker sending rule
 Marker receiving rule



Algorithm - Results

 Prerecording event
 Postrecording event



Stability detection

 Input = a stable property y
 Output = a Boolean variable definite with the 

property:
 y(Si) => definite and definite => y(So) 

 Algorithm:
 Begin
 record a global state S*
 Definite => y(S*) 
 end



Thank you !

Questions?


