
Today
What’s in a name
Flat naming
Structured naming
Attribute-based naming

Naming



EECS 345 Distributed Systems 
Northwestern University

Names, identifiers and addresses

Names are used to denote entities in a distributed 
system
– Hosts, printers, files, processes, users ….

To operate on an entity, e.g. print a file, we need to 
access it at an access point
– An entity can offer more than one access points (think of 

telephone numbers)

Access points are entities that are named by means of 
an address (telephone numbers)
A location-independent name for an entity E, is 
independent from the addresses of the access points 
offered by E

2



EECS 345 Distributed Systems 
Northwestern University

Identifiers

Pure name – a name that has no meaning at all; it is 
just a random string. Pure names can be used for 
comparison only.
Identifier: A name having the following properties
– Each identifier refers to at most one entity
– Each entity is referred to by at most one identifier
– An identifier always refers to the same entity (no reusing)

An identifier need not necessarily be a pure name, i.e., 
it may have content

3



EECS 345 Distributed Systems 
Northwestern University

Flat naming

Given an essentially unstructured name (e.g., an 
identifier), how can we locate its associated access 
point?
– Simple solutions (broadcasting)
– Home-based approaches
– Distributed Hash Tables (structured P2P)
– Hierarchical location service

4



EECS 345 Distributed Systems 
Northwestern University

Simple solutions

Broadcasting – simply broadcast the ID, requesting 
the entity to return its current address. 
– Can never scale beyond local-area networks
– Requires all processes to listen to incoming location requests

Forwarding pointers – each time an entity moves, it 
leaves behind a pointer telling where it has gone to.
– Dereferencing can be made entirely transparent to clients by 

simply following the chain of pointers
– Update a client’s reference as soon as present location has 

been found
– Geographical scalability problems:

• Long chains are not fault tolerant
• Increased network latency at dereferencing

Essential to have separate chain reduction mechanisms

5



EECS 345 Distributed Systems 
Northwestern University

Home-based approaches

Single-tiered scheme – let a home keep track of where 
the entity is:
– An entity’s home address is registered at a naming service
– The home registers the foreign address of the entity
– Clients always contact the home first, and then continues with 

the foreign location

6



EECS 345 Distributed Systems 
Northwestern University

Home-based approaches

Two-tiered scheme – keep track of visiting entities:
– Check local visitor register first
– Fall back to home location if local lookup fails

Problems with home-based approaches:
– The home address has to be supported as long as the entity 

lives.
– The home address is fixed, which means an unnecessary 

burden when the entity permanently moves to another 
location

– Poor geographical scalability (the entity may be next to the 
client)

7



EECS 345 Distributed Systems 
Northwestern University

Distributed Hash Tables (DHT)
Consider the organization of nodes into a logical ring (Chord)
– Each node is assigned a random m-bit identifier.
– Every entity is assigned a unique m-bit key.
– Entity with key k falls under jurisdiction of node with smallest id ≥ k 

(called its successor)
Non-solution: Let node id keep track of succ(id) (and pred) and do 
a linear search along the ring
Finger tables – each node p maintains a finger table FTp[] with at 
most m entries: FTp[i] = succ(p + 2i−1)
This are basically shortcuts to nodes in the identifier space
FTp[i] points to the first node succeeding p by at least 2i−1.

– To look up key k, p forwards the request to node with index j 
satisfying q = FTp[j] ≤ k < FTp[j + 1]

– If p < k < FTp[1], the request is also forwarded to FTp[1]

8



EECS 345 Distributed Systems 
Northwestern University

DHTs
Resolving key 26 from node 1 

and key 12 from node 28

9



EECS 345 Distributed Systems 
Northwestern University

Exploiting network proximity

The logical organization of nodes in the overlay may 
lead to erratic message transfers in the underlying
– Topology-aware node assignment – When assigning an ID to 

a node, make sure that nodes close in the ID space are also 
close in the network. Can be very difficult.

– Proximity routing – Maintain more than one possible 
successor, and forward to the closest.

• Example: in Chord FTp[i] points to first node in INT = [p + 2i−1, p + 2i − 1]. 
Node p can also store pointers to other nodes in INT.

– Proximity neighbor selection – When there is a choice of 
selecting who your neighbor will be (not in Chord), pick the 
closest one.

10



EECS 345 Distributed Systems 
Northwestern University

Hierarchical location system

Build a large-scale search tree for which the 
underlying network is divided into hierarchical 
domains. Each domain is represented by a separate 
directory node.

11



EECS 345 Distributed Systems 
Northwestern University

HLS – Tree organization

The address of an entity is stored in a leaf node, or in 
an intermediate node
Intermediate nodes contain a pointer to a child if and 
only if the subtree rooted at the child stores an 
address of the entity
The root knows about all entities

12



EECS 345 Distributed Systems 
Northwestern University

HLS lookups and inserts

13

•Start lookup at local leaf node
•If node knows it, follow 
downward 
pointer, otherwise go one up
•Upward lookup always stops at 
root

• Insertion initiated in leaf domain 
D – node dir(D)
•This forwards to parent, … until it 
reaches directory node M
•Request is push down with each 
node creating a location record



EECS 345 Distributed Systems 
Northwestern University

Name space

A graph in which a leaf node represents a (named) 
entity. A directory node is an entity that refers to other 
nodes
A directory node contains a (directory) table of (edge 
label, node identifier) pairs.
We can easily store all kinds of attributes in a node, 
describing aspects of the entity the node represents:

14



EECS 345 Distributed Systems 
Northwestern University

Name resolution & linking

Problem: To resolve a name we need a directory 
node. How do we actually find that (initial) node?
Closure mechanism: The mechanism to select the 
implicit context from which to start name resolution:
– ww.cs.vu.nl: start at a DNS name server
– /home/steen/mbox: start at the local NFS file server

Hard link: What we have described so far as a path 
name: a name that is resolved by following a specific 
path in a naming graph from one node to another.
Soft link: Allow a node O to contain a name of another 
node:
– First resolve O’s name (leading to O)
– Read the content of O, yielding name
– Name resolution continues with name

15



EECS 345 Distributed Systems 
Northwestern University

Name space implementation

Basic issue: Distribute the name resolution process as 
well as name space management across multiple 
machines, by distributing nodes of the naming graph.
Consider a hierarchical naming graph and distinguish 
three levels:
– Global level: Consists of the high-level directory nodes. Main 

aspect is that these directory nodes have to be jointly 
managed by different administrations

– Administrational level: Contains mid-level directory nodes that 
can be grouped in such a way that each group can be 
assigned to a separate administration.

– Managerial level: Consists of low-level directory nodes within 
a single administration. Main issue is effectively mapping 
directory nodes to local name servers.

16



EECS 345 Distributed Systems 
Northwestern University

Interactive and recursive resolution

Interactive – client drives the resolution
– Caching by clients
– Potentially costly communication

Recursive – the server does
– Higher performance demand on servers
– More effective caching
– Reduced communication costs

17



EECS 345 Distributed Systems 
Northwestern University

Scalability issues

Size – ensure that servers can handle a large number 
of requests per time unit
Solution: Assume, at least at high levels, that content 
of nodes hardly ever changes – leverage replication 
and start name resolution at the nearest server
Observation: An important attribute of many nodes is 
the address where the represented entity can be 
contacted. Replicating nodes makes large-scale 
traditional name servers unsuitable for locating mobile 
entities
Geographical – ensure that the name resolution 
process scales across large geographical distances

18



EECS 345 Distributed Systems 
Northwestern University

Attribute-based naming

In many cases, it is much more convenient to name, 
and look up entities by means of their attributes –
traditional directory services
Lookup operations can be extremely expensive, as 
they require to match requested attribute values, 
against actual attribute values
Solutions: 
– Implement basic directory service as database, and combine 

with traditional structured naming system – LDAP
– Entities’ descriptions are translated into attribute-value trees 

which are encoded into a set of unique hash ids for a DHT –
INS/Twine, SWORD, Mercury

19



EECS 345 Distributed Systems 
Northwestern University

20

Summary

Naming is central to computer systems in general and 
distributed systems in particular
How do you name things?
How do you find what you are looking for?
What if that’s a moving target?
How do you implement name/directory services in an 
scalable manner?


	Naming
	Names, identifiers and addresses
	Identifiers
	Flat naming
	Simple solutions
	Home-based approaches
	Home-based approaches
	Distributed Hash Tables (DHT)
	DHTs
	Exploiting network proximity
	Hierarchical location system
	HLS – Tree organization
	HLS lookups and inserts
	Name space
	Name resolution & linking
	Name space implementation
	Interactive and recursive resolution
	Scalability issues
	Attribute-based naming
	Summary

