
Today
Basics of IPC in distributed systems
Models for communication – RPC, 

MOM and Streaming, multicasting

Communication



EECS 345 Distributed Systems 
Northwestern University

IPC in distributed systems

IPC is based on send/receive msgs
For this to work, both parties must agree on a number 
of things
– How many volts to use to signal a 0-bit?
– How does the receiver knows it got the last bit of a msg?
– How longs are integers?
– …

To simplify this – partition the problem into layers, 
each layer in a system communicates with the same 
layer in the other end
– International Standard Organization’s Open Systems 

Interconnection model – ISO OSI

2



EECS 345 Distributed Systems 
Northwestern University

Protocols in communication

Lower-level protocols
– Physical – deals with mechanical and electrical details
– Data link – groups bits into frames & ensure are correctly received
– Network – describes how packet are routed, lowest i/f for most 

distributed systems (IP)

Transport protocols
– Transfer messages between clients, including breaking them 

into packets, controlling low, etc (TCP & connectionless UDP)

High-level protocols
– Session – provides dialog control and synchronization
– Presentation – resolves differences in formats among sites
– Application – originally to contain a set of standard apps

3



EECS 345 Distributed Systems 
Northwestern University

Middleware

Basically an “application” providing general-purpose, 
high-level protocols that can be used by others
– Rich set of communication protocols
– (Un)marshaling of data
– Naming protocols so that different apps can share resources
– Security protocols
– Scaling mechanisms such as support for replication and 

caching

What’s left are really application-specific protocols

4



EECS 345 Distributed Systems 
Northwestern University

Types of communication

Persistent or transient
– Persistent – a message submitted for transmission is stored 

as long as it takes to deliver it
– Transient – … as long as the sending/receiving applications 

are execution (e.g. if transmission is interrupted, msg is lost)

Asynchronous or synchronous
– Sender continues or blocks until request has been accepted
– Points of synchronization

• At request submission, delivery or after processing

Client/server
– Normally based on transient & synchronous communication

Discrete or streaming
– Each message is a complete unit of info. or part of whole

5



EECS 345 Distributed Systems 
Northwestern University

Remote Procedure Call

Some observations
– Application developers are familiar with simple procedure 

model
– Well engineered procedures operate in isolation
– There’s no fundamental reason not to execute procedures on 

a separate machine

Can you hide sender/receiver communication using 
procedure calls?

6



EECS 345 Distributed Systems 
Northwestern University

Basic RPC operation

A RPC occurs in the following steps:
1. Client procedure calls client stub
2. Client stub builds msg. and calls the local OS
3. Client’s OS sends msg. to remote OS
4. Remote OS gives msg. to server stub
5. Server stub unpacks parameters and calls server
6. Server does the work and returns the result to stub
7. Server stub packs it in a msg. and calls local OS
8. Server’s OS sends msg. to client’s OS
9. Client’s OS gives msg. to client stub
10.Stub unpacks result 

and returns to client

7



EECS 345 Distributed Systems 
Northwestern University

RPC: Parameter passing

Marshaling – more than wrapping parameters
– Client and server may have different data representations
– Client and server have to agree on encoding:

• How are basic data values represented (integers, floats, …)
• How are complex data values represented (arrays, unions)

RPC assumes
– Copy in/copy out semantics
– All data to be worked on is passed by parameters

How about pointers?
– Copy/restore instead of

call-by-reference
– Remote reference for 

more complex 
structures

8



EECS 345 Distributed Systems 
Northwestern University

Asynchronous RPCs

Get rid of the strict request-reply behavior, but let the 
client continue w/o waiting for server’s answer

A variation – deferred synchronous RPC

9

Synchronous Asynchronous



EECS 345 Distributed Systems 
Northwestern University

Message Oriented Communication

What if we cannot assume the receiver side is going to 
be executing at the time the request is issued?
Asynchronous persistent communication through 
support of middleware-level queues – queues 
correspond to buffers at communication servers

10



EECS 345 Distributed Systems 
Northwestern University

Message brokers and apps. integration

Message queuing systems assume a common 
messaging protocol: all applications agree on 
message format
To use MQ systems for integration – message broker: 
takes care of application heterogeneity
– Transforms incoming messages to target format
– Often acts as an application gateway
– May provide subject-based routing capabilities

11



EECS 345 Distributed Systems 
Northwestern University

Stream-oriented communication

All communication facilities discussed so far are 
essentially based on discrete, exchange of information
Continuous media – values are time dependent
– Audio, video. sensor data (temperature, pressure, etc.)

Transmission modes – different timing guarantees with 
respect to data transfer
– Asynchronous: no restrictions with respect to when data is to 

be delivered
– Synchronous: define a maximum end-to-end delay for 

individual data packets
– Isochronous: define a maximum and minimum end-to-end 

delay (jitter is bounded)

12



EECS 345 Distributed Systems 
Northwestern University

Streams

A (continuous) data stream is a connection-oriented 
comm. facility that supports isochronous transmission
Some common stream characteristics:
– Streams are unidirectional
– There is generally a single source, and one or more sinks
– Often, either the sink and/or source is a wrapper around 

hardware (e.g., camera, CD device, TV monitor, dedicated 
storage)

Stream types:
– Simple: consists of a single flow of data, e.g., audio or video
– Complex: multiple data flows, e.g., stereo audio or 

combination audio/video

Streams are all about timely delivery of data. How do 
you specify this QoS? What do you do in the Internet?

13



EECS 345 Distributed Systems 
Northwestern University

Group communication – multicast

A key service for many interesting applications
– Online gaming, video conferencing, content 

distribution …
Approaches to group communication

14

Basic unicast
Scalability issues with 
replication at source,
link stress, …

Overlay Multicast!
Multicast functionality pushed to end systems
End systems use unicast for distribution of 
multicast messages

IP Multicast
Needs router support
Scalability problems (e.g. per group state)
Network management issues

Multicast
Decouples # of receivers from amount 
of state kept at nodes
Reduces redundant network 
communication



EECS 345 Distributed Systems 
Northwestern University

Application level multicast - issues

Minimize link stress – how often does an overlay 
message cross the same physical link
Minimize stretch – delay between overlay path and 
network-level path
Performance-centric or DHT-based?
Churn, i.e. high transiency of end systems
Root-bottleneck problem for bandwidth-intensive 
applications
Uneven load distribution of tree-based protocols

15



EECS 345 Distributed Systems 
Northwestern University

Gossip-based data dissemination

Assuming there are no write-write conflicts
– Update operations initially performed at one (few) nodes
– Node passes its updated state to a limited set of neighbors
– Update propagation is lazy, eventually each update should 

reach every node

Anti-entropy
– Node chooses another at random, and exchanges differences
– Push, pull or push/pull

Gossiping
– Node just updated, tells others about it; if the node contacted 

already knows about it, the source stops w/ probability 1/k
– If you need everyone to know, gossiping along doesn’t do it

And how do you delete items?!
– Death certificates and dormant death certificates

16



EECS 345 Distributed Systems 
Northwestern University

17

Summary

Communication is at the heart of distributed systems
Powerful primitives makes programming them a lot 
easier
Solutions for large distributed systems should consider 
a number of different issues
– Referential and temporal decoupling
– Group communication
– ….


	Communication
	IPC in distributed systems
	Protocols in communication
	Middleware
	Types of communication
	Remote Procedure Call
	Basic RPC operation
	RPC: Parameter passing
	Asynchronous RPCs
	Message Oriented Communication
	Message brokers and apps. integration
	Stream-oriented communication
	Streams
	Group communication – multicast
	Application level multicast - issues
	Gossip-based data dissemination
	Summary

