
A. Lai and J. Nieh, Columbia U.
ACM TOCS, May 2006

On the performance of wide-area thin-client 
computing



EECS 345 Distributed Systems 
Northwestern University

Thin-client computing

Client and server communicate over a network using a 
remote display control
– Client sends user input, server returns screen updates

Graphical display can be virtualized and served across 
a network to a client device
Application logic is executed on the server

2



EECS 345 Distributed Systems 
Northwestern University

Key question

Technology enablers
– Improvements in network bandwidth, cost and ubiquity
– High total cost of ownership for desktop computing

Big business opportunity 
– Sun Microsystems, Google, Microsoft, …
– Citrix MetaFrame, AT&T Virtual Network Computing, …

The effectiveness of thin-client computing over the 
wide-area network is unclear

3



EECS 345 Distributed Systems 
Northwestern University

Goal and experimental design
Compare thin-client systems to asses basic display performance 
and feasibility in WAN
Platforms evaluated
– Citrix MetaFrame 1.8, Windows 2000
– Windows 2000 Terminal Service
– Tarantella Enterprise Express II, Linux
– AT&T VNC v3.3.2, Linux
– Sun Ray I, SunOS
– XFree86 3.3.6 (X11R6), Linux

Parameters
– Encoding of display primitives
– Client pull/Server push and lazy/eager screen updates
– Compression used for screen updates
– Max display color depth supported by the platform
– Transport protocol

4



EECS 345 Distributed Systems 
Northwestern University

Thin-client platforms characteristics

Platform Display 
Protocol

Display
Encoding

Screen 
Updates

Compression Max Display 
Depth

Transport 
Protocol 

Citrix MetaFrame ICA Low-level 
graphics

Server-push 
lazy

RLE 8-bit color TCP/IP

Microsoft Terminal 
Service

RDP Low-level 
graphics

Server-push 
lazy

RLE 8-bit color TCP/IP

Tarantella AIP Low-level 
graphics

Server-push, 
eager or lazy
based on bwd 
load

Adaptively 
enabled, RLE, 
and LZW at 
low bwd

8-bit color TCP/IP

AT&T VNC VNC 2D draw 
primitives

Client-pull,
lazy upd. bet/ 
client requests 
discarded

Hextile (2D
RLE)

24-bit color TCP/IP

Sun Ray Sun Ray 2D draw 
primitives

Server-push
eager

None 24-bit color UDP/IP

X11R6 X High-level 
graphics

Server-push, 
eager

None 24-bit color TCP/IP

5



EECS 345 Distributed Systems 
Northwestern University

Measurement methodology

Standard app benchmarks measure server 
performance, but client experience may be quite 
different
– Output display may be completely decoupled (display updates 

merged, packets dropped, etc)

You can’t just instrument clients – most thin-client 
systems are proprietary and closed-sourced
Solution – slow-motion benchmarking
– Use packet monitor on client side
– Latency of an operation – from first client packet sent to last 

server packet received
– Introduce delays between separate visual components to 

isolate exchanges, later combine them to get overall results

6



EECS 345 Distributed Systems 
Northwestern University

Measurement methodology

Slow-motion’s limitations and risks
– Does not include time from when client receives update to 

when the image is drawn to the screen
• Particular an issue if client and server are not of comparable 

performance
– Potential problems with TCP

• Delays may reset TCP congestion window to initial values and 
force going through slow-start

• Delays may avoid Nagle impact by allowing the client to receive 
all acks

Mostly avoided or measured
– Client and sever with comparable performance
– Impact on TCP for one application – reported at 1-10%

7



EECS 345 Distributed Systems 
Northwestern University

Experimental testbed

Two pairs of thin-client/server systems, packet monitor 
server and web server
Network values
– Minimum available bandwidth from East-West: 100Mbps
– Measured ping ~66.35ms
– TCP window size used 1MB
– iperf measured available bandwidth 45Mbps

Internet2, simulated Internet2 and 100Mbps LAN

8

West side (Stanford) East side (Columbia)

Internet2

PC Thin 
server

Sun Thin 
server

Benchmark 
Server

Packet 
Monitor

PC Thin 
Client

Sun Thin 
Client



EECS 345 Distributed Systems 
Northwestern University

Application benchmarks

Latency benchmark
– Small Java applet to run 5 small microtests

• Letter – keystroke + display a 12-point ‘A’
• Scroll – scroll down 450 word, 58 lines, 12-poin page
• Fill – fill screen with 320x240 red pixels
• Red bitmap – bitmap download a 1.78KB JPG red bitmap of 320x240
• Image – download 15.5KB JPEG image of 320x240

Web benchmark
– Web Text Page Load test from Ziff-Davis i-Bench + Netscape 

Navigator
– Modified for slow-motion benchmarking – one page at a time

Video playback benchmark
– 5.11MB MPEG1 video; a 34s clip with ideal rate of 24fps 
– Modified for slow-motion benchmarking – both 1fps and 24fps 

rates

9



EECS 345 Distributed Systems 
Northwestern University

Latency over bandwidth

10

Bandwidth used – note 
Sun Ray is the worst

Latency for scroll (you want 
<50-150ms for keeping users 
from noticing anything –
where’s Sun Ray?



EECS 345 Distributed Systems 
Northwestern University

Latency over bandwidth

11

Web and video quality–
again note Sun Ray



EECS 345 Distributed Systems 
Northwestern University

Partition client/server to minimize synch

12

Most of the data is not 
transferred; the X display 
command does not complete 
until the client receives the 
frame and acks; by then the 
app has to skip 10 frames!

… and now look at video 
quality again

Video data transferred –
compared X LAN and WAN 
with Sun Ray



EECS 345 Distributed Systems 
Northwestern University

… other guidelines …

Use simpler, pixel-based display primitives
– Higher-level display encodings (X) are meant to save 

bandwidth with text, but text is cheap
– In general there’s no difference and worst user perceived 

performance
– 2d draw primitives like Sun Ray’s and VNC’s work best

Use low-level forms of compression
– “Smart”, adaptive compression algorithms may give you worst 

than expected results

13



EECS 345 Distributed Systems 
Northwestern University

… other guidelines …

Adopt eager, server-push display updates
– Both lazy and client-pull are attempts at reducing bandwidth 

usage – both are ideas
– Look at lazy, client-pull VNC and eager, server pull Sun Ray

UDP over TCP
– Less to tune and the application knows best anyway (the thin-

client layer)

14



EECS 345 Distributed Systems 
Northwestern University

Summary

First quantitative measurement to examine the impact 
of WAN latency on thin-client computing
Wide-area computing services are feasible
Growing number of multimedia apps and available 
bandwidth → …
Guidelines
– Optimize for latency rather than bandwidth
– Minimize need for synchronized local client window system 

state
– Use simpler, pixel-based display primitives
– Adopt eager, server-push display updates
– Use low-level forms of compression
– UDP over TCP

15


	On the performance of wide-area thin-client computing
	Thin-client computing
	Key question
	Goal and experimental design
	Thin-client platforms characteristics
	Measurement methodology
	Measurement methodology
	Experimental testbed
	Application benchmarks
	Latency over bandwidth
	Latency over bandwidth
	Partition client/server to minimize synch
	… other guidelines …
	… other guidelines …
	Summary

