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Thin-client computing

Client and server communicate over a network using a 
remote display control
– Client sends user input, server returns screen updates

Graphical display can be virtualized and served across 
a network to a client device
Application logic is executed on the server
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Key question

Technology enablers
– Improvements in network bandwidth, cost and ubiquity
– High total cost of ownership for desktop computing

Big business opportunity 
– Sun Microsystems, Google, Microsoft, …
– Citrix MetaFrame, AT&T Virtual Network Computing, …

The effectiveness of thin-client computing over the 
wide-area network is unclear

3



EECS 345 Distributed Systems 
Northwestern University

Goal and experimental design
Compare thin-client systems to asses basic display performance 
and feasibility in WAN
Platforms evaluated
– Citrix MetaFrame 1.8, Windows 2000
– Windows 2000 Terminal Service
– Tarantella Enterprise Express II, Linux
– AT&T VNC v3.3.2, Linux
– Sun Ray I, SunOS
– XFree86 3.3.6 (X11R6), Linux

Parameters
– Encoding of display primitives
– Client pull/Server push and lazy/eager screen updates
– Compression used for screen updates
– Max display color depth supported by the platform
– Transport protocol
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Thin-client platforms characteristics

Platform Display 
Protocol

Display
Encoding

Screen 
Updates

Compression Max Display 
Depth

Transport 
Protocol 

Citrix MetaFrame ICA Low-level 
graphics

Server-push 
lazy

RLE 8-bit color TCP/IP

Microsoft Terminal 
Service

RDP Low-level 
graphics

Server-push 
lazy

RLE 8-bit color TCP/IP

Tarantella AIP Low-level 
graphics

Server-push, 
eager or lazy
based on bwd 
load

Adaptively 
enabled, RLE, 
and LZW at 
low bwd

8-bit color TCP/IP

AT&T VNC VNC 2D draw 
primitives

Client-pull,
lazy upd. bet/ 
client requests 
discarded

Hextile (2D
RLE)

24-bit color TCP/IP

Sun Ray Sun Ray 2D draw 
primitives

Server-push
eager

None 24-bit color UDP/IP

X11R6 X High-level 
graphics

Server-push, 
eager

None 24-bit color TCP/IP
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Measurement methodology

Standard app benchmarks measure server 
performance, but client experience may be quite 
different
– Output display may be completely decoupled (display updates 

merged, packets dropped, etc)

You can’t just instrument clients – most thin-client 
systems are proprietary and closed-sourced
Solution – slow-motion benchmarking
– Use packet monitor on client side
– Latency of an operation – from first client packet sent to last 

server packet received
– Introduce delays between separate visual components to 

isolate exchanges, later combine them to get overall results
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Measurement methodology

Slow-motion’s limitations and risks
– Does not include time from when client receives update to 

when the image is drawn to the screen
• Particular an issue if client and server are not of comparable 

performance
– Potential problems with TCP

• Delays may reset TCP congestion window to initial values and 
force going through slow-start

• Delays may avoid Nagle impact by allowing the client to receive 
all acks

Mostly avoided or measured
– Client and sever with comparable performance
– Impact on TCP for one application – reported at 1-10%
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Experimental testbed

Two pairs of thin-client/server systems, packet monitor 
server and web server
Network values
– Minimum available bandwidth from East-West: 100Mbps
– Measured ping ~66.35ms
– TCP window size used 1MB
– iperf measured available bandwidth 45Mbps

Internet2, simulated Internet2 and 100Mbps LAN
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West side (Stanford) East side (Columbia)

Internet2

PC Thin 
server

Sun Thin 
server

Benchmark 
Server

Packet 
Monitor

PC Thin 
Client

Sun Thin 
Client
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Application benchmarks

Latency benchmark
– Small Java applet to run 5 small microtests

• Letter – keystroke + display a 12-point ‘A’
• Scroll – scroll down 450 word, 58 lines, 12-poin page
• Fill – fill screen with 320x240 red pixels
• Red bitmap – bitmap download a 1.78KB JPG red bitmap of 320x240
• Image – download 15.5KB JPEG image of 320x240

Web benchmark
– Web Text Page Load test from Ziff-Davis i-Bench + Netscape 

Navigator
– Modified for slow-motion benchmarking – one page at a time

Video playback benchmark
– 5.11MB MPEG1 video; a 34s clip with ideal rate of 24fps 
– Modified for slow-motion benchmarking – both 1fps and 24fps 

rates
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Latency over bandwidth
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Bandwidth used – note 
Sun Ray is the worst

Latency for scroll (you want 
<50-150ms for keeping users 
from noticing anything –
where’s Sun Ray?
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Latency over bandwidth
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Web and video quality–
again note Sun Ray
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Partition client/server to minimize synch
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Most of the data is not 
transferred; the X display 
command does not complete 
until the client receives the 
frame and acks; by then the 
app has to skip 10 frames!

… and now look at video 
quality again

Video data transferred –
compared X LAN and WAN 
with Sun Ray
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… other guidelines …

Use simpler, pixel-based display primitives
– Higher-level display encodings (X) are meant to save 

bandwidth with text, but text is cheap
– In general there’s no difference and worst user perceived 

performance
– 2d draw primitives like Sun Ray’s and VNC’s work best

Use low-level forms of compression
– “Smart”, adaptive compression algorithms may give you worst 

than expected results
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… other guidelines …

Adopt eager, server-push display updates
– Both lazy and client-pull are attempts at reducing bandwidth 

usage – both are ideas
– Look at lazy, client-pull VNC and eager, server pull Sun Ray

UDP over TCP
– Less to tune and the application knows best anyway (the thin-

client layer)
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Summary

First quantitative measurement to examine the impact 
of WAN latency on thin-client computing
Wide-area computing services are feasible
Growing number of multimedia apps and available 
bandwidth → …
Guidelines
– Optimize for latency rather than bandwidth
– Minimize need for synchronized local client window system 

state
– Use simpler, pixel-based display primitives
– Adopt eager, server-push display updates
– Use low-level forms of compression
– UDP over TCP
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