On the performance of wide-area thin-client
computing

A. Lai and J. Nieh, Columbia U.
ACM TOCS, May 2006




Thin-client computing

Client and server communicate over a network using a
remote display control

— Client sends user input, server returns screen updates

Graphical display can be virtualized and served across
a network to a client device

Application logic is executed on the server

\

N
=
& =
=8

EECS 345 Distributed Systems
Northwestern University




Key guestion

« Technology enablers
— Improvements in network bandwidth, cost and ubiquity
— High total cost of ownership for desktop computing

» Big business opportunity
— Sun Microsystems, Google, Microsoft, ...
— Citrix MetaFrame, AT&T Virtual Network Computing, ...
» The effectiveness of thin-client computing over the
wide-area network Is unclear

EECS 345 Distributed Systems
Northwestern University



Goal and experimental design

« Compare thin-client systems to asses basic display performance
and feasibility in WAN

» Platforms evaluated

Citrix MetaFrame 1.8, Windows 2000
Windows 2000 Terminal Service
Tarantella Enterprise Express Il, Linux
AT&T VNC v3.3.2, Linux

Sun Ray I, SunOS

XFree86 3.3.6 (X11R6), Linux

» Parameters

Encoding of display primitives

Client pull/Server push and lazy/eager screen updates
Compression used for screen updates

Max display color depth supported by the platform
Transport protocol

EECS 345 Distributed Systems
Northwestern University




Thin-client platforms characteristics

Platform Display Display Screen Compression | Max Display Transport
Protocol Encoding Updates Depth Protocol

Low-level Server-push TCP/IP
graphics lazy

2D draw Client-puill, Hextile (2D 24-bit color TCP/IP
primitives lazy upd. bet/ RLE)

client requests

discarded

High-level Server-push, None 24-bit color TCP/IP
graphics eager

EECS 345 Distributed Systems
Northwestern University




Measurement methodology

« Standard app benchmarks measure server
performance, but client experience may be quite
different

— Output display may be completely decoupled (display updates
merged, packets dropped, etc)

* You can't just instrument clients — most thin-client
systems are proprietary and closed-sourced

» Solution — slow-motion benchmarking
— Use packet monitor on client side

— Latency of an operation — from first client packet sent to last
server packet received

— Introduce delays between separate visual components to
isolate exchanges, later combine them to get overall results

EECS 345 Distributed Systems
Northwestern University



Measurement methodology

« Slow-motion’s limitations and risks

— Does not include time from when client receives update to
when the image is drawn to the screen
» Particular an issue if client and server are not of comparable
performance
— Potential problems with TCP

* Delays may reset TCP congestion window to initial values and
force going through slow-start

« Delays may avoid Nagle impact by allowing the client to receive
all acks

* Mostly avoided or measured
— Client and sever with comparable performance
— Impact on TCP for one application — reported at 1-10%

EECS 345 Distributed Systems
Northwestern University




Experimental testbed

« Two pairs of thin-client/server systems, packet monitor
server and web server

* Network values
— Minimum available bandwidth from East-West: 100Mbps
— Measured ping ~66.35ms
— TCP window size used 1MB
— iperf measured available bandwidth 45Mbps
» Internet2, simulated Internet2 and 100Mbps LAN

Benchmark Packet PC Thin
Server Monitor Clien

PC Thin Sun Thin
server |- =-.||- =-.|server |' ='-| |' ="| |' ="|

Sun Thin
ooono oooo Cllent
West side (Stanford)

East side (Columbia) I—lj—l

EECS 345 Distributed Systems
Northwestern University




Application benchmarks

» Latency benchmark

— Small Java applet to run 5 small microtests
» Letter — keystroke + display a 12-point ‘A’
» Scroll — scroll down 450 word, 58 lines, 12-poin page
 Fill - fill screen with 320x240 red pixels
» Red bitmap — bitmap download a 1.78KB JPG red bitmap of 320x240
* Image — download 15.5KB JPEG image of 320x240

* \Web benchmark

— Web Text Page Load test from Ziff-Davis i-Bench + Netscape
Navigator

— Modified for slow-motion benchmarking — one page at a time

Video playback benchmark
— 5.11MB MPEG1 video; a 34s clip with ideal rate of 24fps

— Modified for slow-motion benchmarking — both 1fps and 24fps
rates

EECS 345 Distributed Systems
Northwestern University



Latency over bandwidth

OXEX 24 OICAORDP BAIP OVNC BVNC 24 OSunRay
100

Bandwidth used — note
Sun Ray is the worst

-
o
—

Bandwidth (Mbit/s)
|

0.1 H
0.01 4 .
Letter Scroll Red Fill Red Image
Bitmap EILAN W Internet2 ClLarge TCP Window
350
300
- 250 4 ]
Latency for scroll (you want g .
<50-150ms for keeping users g /| o a
from noticing anything — 8 00 | |
where’s Sun Ray? 50 | | u i
X X 24 ICA RDP AlP VNC VNC 24 SunRay
Platforms

EECS 345 Distributed Systems
Northwestern University




Latency (s)

Latency over bandwidth

OLAN @ internet2 O Large TCP Window

Web and video quality—

again note Sun Ray

S S8
[felle] P~
X X 24 ICA RDP AlP VNC VNC 24 SunRay

Platforms OLAN B Internet2 O Large TCP Window

100%
90%

B0%
270%
g 60%
O 50%
3 40%
g
= 30%

20% -

Soditint-Inl Inl Inl'ln! In

0% . -
X X 24 ICA RDP AlIP WNC VNC 24 SunRay
Platforms

EECS 345 Distributed Systems
Northwestern University




Partition client/server to minimize synch

O1fps ELAN Olnternet2 OLarge TCP Window

w

-—

o

o
—
o

F

m

i

)
—
o™

X X 24 ICA

RDP AP
Platforms

Most of the data is not

transferred; the X display

VNC VNC 24 SunRay

command does not complete
until the client receives the
frame and acks; by then the
app has to skip 10 frames!

Video data transferred —
compared X LAN and WAN
with Sun Ray

... and now look at video
quality again

OLAN B Internet2 OLarge TCP Window

100%

90% -
80% -
270% -
S 60% -
< 509, -
® 40% A

;-

S 30% -
20% -
10% -

0% -

1 1 1 1 T [ 1 [ 1

T

X

I

X24

|l

ICA

EECS 345 Distributed Systems
Northwestern University

lln

RDP

i

AlP

Platforms

VNC VNC 24 SunRay




... other guidelines ...

= Use simpler, pixel-based display primitives

— Higher-level display encodings (X) are meant to save
bandwidth with text, but text is cheap

— In general there’s no difference and worst user perceived
performance

— 2d draw primitives like Sun Ray’s and VNC’s work best

» Use low-level forms of compression

— “Smart”, adaptive compression algorithms may give you worst
than expected results DLAN B internet2 OLarge TCP Window

350

300

] ]
- 250

E
- 200 1

S 150 4

A

X X24 ICA RDP AP VNC VNC 24 SunRay
Platforms

EECS 345 Distributed Systems
Northwestern University



... other guidelines ...

« Adopt eager, server-push display updates

— Both lazy and client-pull are attempts at reducing bandwidth
usage — both are ideas

— Look at lazy, client-pull VNC and eager, server pull Sun Ray
OLAN B internet2 OLarge TCP Window

100%
90% A
80% +

270% 1
B 60% 1
cg 50% -
8 40% 1
> 30% -
20% +
10% -
0%

I I S

o o e e I I

X X 24 ICA RDP AlP VNC VNC 24 SunRay
Platforms

+ UDP over TCP

— Less to tune and the application knows best anyway (the thin-
client layer)

EECS 345 Distributed Systems
Northwestern University



Summary

» First quantitative measurement to examine the impact
of WAN latency on thin-client computing

» Wide-area computing services are feasible

» Growing number of multimedia apps and available
bandwidth — ...

» Guidelines
— Optimize for latency rather than bandwidth

— Minimize need for synchronized local client window system
state

— Use simpler, pixel-based display primitives
— Adopt eager, server-push display updates
— Use low-level forms of compression

— UDP over TCP

EECS 345 Distributed Systems
Northwestern University



	On the performance of wide-area thin-client computing
	Thin-client computing
	Key question
	Goal and experimental design
	Thin-client platforms characteristics
	Measurement methodology
	Measurement methodology
	Experimental testbed
	Application benchmarks
	Latency over bandwidth
	Latency over bandwidth
	Partition client/server to minimize synch
	… other guidelines …
	… other guidelines …
	Summary

