
F. Douglis and J. Ousterhout, UC
Berkeley, SP&E, August 1991

Transparent Process Migration: Design
Alternatives and the Sprite Implementation

EECS 345 Distributed Systems
Northwestern University

Process migration

Process migration – to move a process’s execution
site at any time from a source to a destination machine
of the same architecture
Alternatives like rsh lack transparency
– The process doesn’t run in the same environment as the

parent process (cwd, environment variables, …)

Eviction
– You could only kill the process

Performance
– It’s to slow which makes it impractical to short-lived processes

Automatic selection of target machine
– User has to pick where to run the process

2

EECS 345 Distributed Systems
Northwestern University

Process migration in Sprite

Sprite
– Unix-like OS for a set of workstations and file servers in a LAN
– High degree of network integration, e.g. common file server
– Kernels work closely through RPC

Key aspects to migration in Sprite
– Idle hosts are plentiful – 66-87% idle in their case
– Users ‘own’ their workstation – need quick eviction
– Sprite uses kernel calls which may mean a harder

environment than with message-passing system
– It provides network support such as remote access to files

and devices, single network-wide process IDs & efficient RPC
– Sprite machines are typically diskless; files are access

through file servers

3

EECS 345 Distributed Systems
Northwestern University

Process migration in Sprite

Most commonly as part of the exec or when evicted
Key goal – High transparency
– A process behavior should not be affected by migration – A

remote process has same access to VM, files, devices, and
other resources as in its home machine

– A process appearance to the rest of the world shouldn’t be
affected either

Goals
– High transparency
– Avoid residual dependencies
– High migration and migrated process performance
– Low complexity, so that it is easy to maintain

4

EECS 345 Distributed Systems
Northwestern University

The overall problem – managing state

Migration techniques depend on associated state
– Virtual memory – Biggest amount of state
– Open files – In process VM and kernel, including identifier,

current access point, cache file blocks
– Message channels – In a msg-based OS, instead of open files
– Execution state – Whatever you need for a context switch
– Other kernel state – Process and user id, cwd, stats, …

For each piece of state, the system could
– Transfer the state – easy for private state
– Arrange for forwarding – ideally done transparently
– Ignore the state & sacrifice transparency – In Sprite, only for

memory-mapped I/O devices such as frame buffers

Transparency doesn’t always make sense
– E.g. How much mem. is there?

5

EECS 345 Distributed Systems
Northwestern University

Mechanism for migration - VM

6

Source

Source

Source

Source

Target

Target

Target

Target

File server

Process executes

Process
executes Xfer VM

Xfer VM

Residual dependencies end

(a) LOCUS, Charlotte

(b) V

(c) Accent

(d) Sprite

Pre-copying

Lazy copying

Lazy copying
via the file
server

EECS 345 Distributed Systems
Northwestern University

Mechanisms for migration – VM

Virtual memory
– (a – LOCUS) May be long and wasteful
– (b – V) Precopying speeds things up, but may require

copying some pages twice
– (c – Accent) Cheap but leaves residual dependencies,

potentially on every visited machine
– (d – Sprite) A form of lazy copying

• Source machine freezes process, flushes dirt pages to backing files,
discards its address space

• In target machine, process starts executing w/o resident pages
• Since the server uses memory caching, disk operations may be avoided
• Dirty pages have to be transfer twice over the network
• Not an issue for exec transfer, but yes for later eviction
• Things can get costly with shared writable memory, so it’s disallowed

7

EECS 345 Distributed Systems
Northwestern University

Mechanisms for migration – files and PCB

Migrating open files – i.e. its components
– File reference – reference is also guarantee of existence –

don’t close it for migration
– Caching information – Sprite permits caching, but disables it

when a process opens for writing – need modification of
server code to allow open in target before closing it in origin
without disabling caching (atomic operation)

– Access position – Can also be shared among processes;
similar approach to caching – disable local mgnt. and make
the server responsible if it becomes shared

PCB
– Some state is left in the home machine as it needs to assist

with some operations (e.g. fork)

8

EECS 345 Distributed Systems
Northwestern University

Supporting transparency

High transparency
– A process behavior should not be affected by migration
– A process appearance to the rest of the world shouldn’t be

affected either

Four techniques to achieve this
– Make kernel calls location independent – e.g. common file

name space
– Transfer state at migration time to ensure you can use normal

calls
– Forward few calls that can’t be implemented transparently,

e.g. gettimeofday, getpgrp
– Set of ad-hoc techniques for a few kernel calls

• E.g. fork – since process ids include name of home machine, the home
machine allocates it

9

EECS 345 Distributed Systems
Northwestern University

Residual dependencies

Residual transparency – Need for a host to maintain
data structures or provide functionality for a process
after process migrates away from host
Bad
– Reliability – One host failure affects another one
– Performance – Cost of remote operations
– Complexity – Distributed state is harder to manage

You can’t always avoid it
– If using a remote device, for example
– To maintain transparency, e.g. process creation and

termination
– May even improve performance sometimes, e.g. lazy copying

Sprite pays a bit for higher transparency

10

EECS 345 Distributed Systems
Northwestern University

Migration policies

Four aspects of migration policies
– What to migrate
– When to migrate it - Eager et al. & Harchol-Balter et al.

articles on migrating active processes
– Where to migrate it – This is automated, the rest is manual. A

daemon process checks (lack of) activity and reports
candidate host to the central migration server

– Who makes the above decisions – Kernel provides no
support, user level apps offer some assistance

Using migration in Sprite
– With pmake & mig

– Eviction – moving foreign process back home ;)

11

EECS 345 Distributed Systems
Northwestern University

Migration overhead

Action Time/Rate

Select and release an idle host 36ms

Migrate “null” process 76ms

Transfer info for open files 9.4ms/file

Flush modified file blocks 480KB/sec

Flush modified pages 660KB/sec

Transfer exec arguments 480KB/sec

Fork, exec null process w/ migration, wait for child and exit 81ms

Fork, exec null process locally, wait for child and exit 46ms

12

Cost of transferring open files is dominated by RPC latency – 3 RPC at
1ms each
Speed of transferring virtual mem. pages and file blocks is determined by
RPC bandwidth – 480-660 KB/sec

EECS 345 Distributed Systems
Northwestern University

Overhead of remote execution

Name Description

Pmake Recompile pmake source sequentially using pmake

LATEX Run Latex on a draft of this article

RCP Copy a 1MB file to another host using TCP

fork Fork and wait for child, 1000 times

gettime Get the time of day 10,000 times

13

RemoteLocal

EECS 345 Distributed Systems
Northwestern University

Application performance

14

Benchmark – compiling 276
Sprite kernel source files and
linking the object files

More typical pmake speed-ups

Overall, the bottlenecks are the CPU in the file
server and the host running pmake.

EECS 345 Distributed Systems
Northwestern University

Usage patterns

Instrumented Sprite to keep track of migration related
stats – this is for a one-month period
Remote processes – 31% (0.27-88%) of all processes
Fraction of exec-time (full migration) 86% (14%) – so
VM migration is not that important
Host change from idle/active – 26’ in avg, 0.12
processes evicted per hour, with 25 hosts, as a result
Hosts are 66-78% available for migration
86% of migration requests were fully satisfied; 2%
couldn’t be cover at all

15

EECS 345 Distributed Systems
Northwestern University

Summary

Significant improvements to get from migration, but
Its use may be limited by lack of (easy to use)
applications
Look at migration costs in the whole picture, not
through microbenchmarks
Migration for load balancing may not work in Sprite
setting given costs of VM/file cache migration
Make it easy to use; this facilitates adoption, forces
maintenance and let’s you find holes in your system

16

	Transparent Process Migration: Design Alternatives and the Sprite Implementation
	Process migration
	Process migration in Sprite
	Process migration in Sprite
	The overall problem – managing state
	Mechanism for migration - VM
	Mechanisms for migration – VM
	Mechanisms for migration – files and PCB
	Supporting transparency
	Residual dependencies
	Migration policies
	Migration overhead
	Overhead of remote execution
	Application performance
	Usage patterns
	Summary

