Processes In Distributed Systems

Today

® Threads in distributed systems
® Virtualization

® Thin-client computing

® Servers

® Code migration

Processes and threads

Processes offer concurrency transparency, but at a
relatively high price on performance

» Threads offer concurrency without much less
transparency
— Applications with better performance that are harder to
code/debug
» Advantages of multithreading
— No need to block with every system call
— Easy to exploit available parallelism in multiprocessors
— Cheaper communication between components than with IPC
— Better fit for most complex applications

» Alternative ways to provide threads
— User-, kernel-level threads, LWP and scheduler activations

EECS 345 Distributed Systems
Northwestern University

Threads In distributed systems — clients

Client usage is mainly to hide network latency

» E.g. multithreaded web client:

— Web browser scans an incoming HTML page, and finds that
more files need to be fetched

— Each file is fetched by a separate thread, each doing a
(blocking) HTTP request

— As files come in, the browser displays them

» Multiple request-response calls to other machines:

— A client does several RPC calls at the same time, each one by
a different thread

— It then waits until all results have been returned

— Note: if calls are to different servers, we may have a linear
speed-up compared to doing calls one after the other

EECS 345 Distributed Systems
Northwestern University

Threads In distributed systems — servers

« In servers, the main issue is improved performance
and better structure

» Improve performance:

— Starting a thread to handle an incoming request is much
cheaper than starting a new process

— Having a single-threaded server prohibits simply scaling the
server to a multiprocessor system

— As with clients: hide network latency by reacting to next
request while previous one is being replied
» Better structure:

— Most servers have high 1/0O demands. Using simple, well-
understood blocking calls simplifies the overall structure.

— Multithreaded programs tend to be smaller and easier to
understand due to simplified flow of control

EECS 345 Distributed Systems
Northwestern University

Virtualization

» Virtualization is becoming increasingly important:
— Hardware changes faster than software
— Ease of portability and code migration
— Isolation of failing or attacked components

» Virtualization can take place at very different levels,
strongly depending on the interfaces as offered by
various systems components:

Library functions Application

=]

Library
System calls
= |
Privileged Operating system ST
instructions s — £— instructions

Hardware

EECS 345 Distributed Systems
Northwestern University

VM architectures

« \We should differentiate between process virtual
machines and virtual machine monitors:
a) Process VM: A program compiled to intermediate (portable)
code, which is then executed by a runtime system (e.g. Java
VM).
b) VMM: A separate software layer that mimics the instruction

set of hardware; a complete operating system and its
applications can be supported (e.g.: VMware).

Application T

Applications T

Operating system

3

Runtime system

Virtual machine monitor

Operating system

Hardware

Hardware

a) (b)

EECS 345 Distributed Systems
Northwestern University

Thin and fat clients

« Client machines provide the means for users to
interact with remote servers

— Fat client — for each remote service, the client machine has a
separate counterpart (a)

— Thin client — client machine is just a terminal providing direct
access to remote services (b)

Client machine Server machine Client machine Server machine
o P o o Appl. Appl.
Application |« RpllEton: »{ Application Application-
A specific A ; independent .
Middleware protocol Middleware Middleware | protocol | Middleware
Local OS Local OS Local OS Local OS
Network Network

EECS 345 Distributed Systems
Northwestern University

Thin-client network computing

» A major part of client-side software is focused on
(graphical) user interfaces.

— With X, the kernel and the application need not be on the
Same maChine Application server Application server User's terminal

Window Application

Xlib interface
manager
— —
Xlib A Xlib
Local OS Local OS

X protocol

- X kernel
Device drivers

Terminaléincludes display
keyboard, mouse, etc.)

» Compound documents: User interface is application
aware — inter application communication:

— Drag-and-drop: move objects across the screen to invoke
interaction with other applications (trash can)

— In-place editing: integrate several applications at user-
interface level (word processing + drawing facilities)

EECS 345 Distributed Systems
Northwestern University

Client-side software and transparency

« Client-side software is often tailored for distribution
transparency
— Access transparency: client-side stubs for RPCs

— Location/migration transparency: let client-side software keep
track of actual location

— Replication transparency: multiple invocations handled by
client stub

— Failure transparency: mask server and communication failures

Client machine Server 1 Server 2 Server 3
Client Server Server Server
appl appl appl appl

|

=7 Wi ak

Client side handles

request replication Replicated request

EECS 345 Distributed Systems
Northwestern University

Server design

» Server — a process that waits for incoming service
requests at a specific transport address

¢ [terative vs. concurrent servers: lterative servers can
handle only one client at a time, in contrast to
concurrent servers

» In practice, there is a 1-to-1 mapping between port
and service, e.g. ftp: 21, smtp:25

» Superservers: Servers that listen to several ports, i.e.,
provide several independent services; start a new
process to handle new requests (UNIX inetd/xinetd)

— For services with more permanent traffic get a dedicated
server

EECS 345 Distributed Systems
Northwestern University

Out-of-band communication

« How to interrupt a server once it has accepted (or is in
the process of accepting) a service request?

» Solution 1: Use a separate port for urgent data
(possibly per service request):

— Server has a separate thread (or process) waiting for
incoming urgent messages

— When urgent msg comes in, associated request is put on hold

» Require OS supports high-priority scheduling of specific threads or
processes

» Solution 2: Use out-of-band communication facilities of
the transport layer:
— E.g. TCP allows to send urgent msgs in the same connection
— Urgent msgs can be caught using OS signaling techniques

EECS 345 Distributed Systems
Northwestern University

Servers and state

« Stateless servers: Never keep accurate information
about the status of a client after having handled a
request:

— Don'’t record whether a file has been opened (simply close it
again after access)

— Don’t promise to invalidate a client’s cache
— Don’t keep track of your clients

» Consequences:

— Clients and servers are completely independent

— State inconsistencies due to client or server crashes are
reduced

— Possible loss of performance because, e.g., a server cannot
anticipate client behavior (think of prefetching file blocks)

EECS 345 Distributed Systems
Northwestern University

Servers and state

« Stateful servers: Keeps track of the status of its
clients:

— Record that a file has been opened, so that prefetching can
be done

— Knows which data a client has cached, and allows clients to
keep local copies of shared data
» Observation: The performance of stateful servers can
be extremely high, provided clients are allowed to
keep local copies. As it turns out, reliability is not a
major problem.

EECS 345 Distributed Systems
Northwestern University

Server clusters

Many server clusters are organized along three

d iffe re nt ti e rS : Logical switch i Application/compute servers

(possibly multiple)

|
>
T

Client requests
—_—

|

I

Dispatched :
request

|

|

|
«—
|

=

|
<«

|

|

First tier

Distributed

file/database

system

|
Second tier ! Third tier

Key element: The first tier is generally responsible for
passing requests to an appropriate server.

— May lead to a bottleneck.

connection

Various solutions, but one single TGP S
popular one is TCP-handoff: ‘>§ :
Client Reques » Switch | (handed off) *

EECS 345 Distributed Systems
Northwestern University

Request

Server

Example: PlanetLab

« Different organizations contribute machines, which
they subsequently share for various experiments

» Ensure that different distributed applications do not get
iInto each other’s way: virtualization:

User-assigned Priviliged management
virtual machines virtual machines

Vserver Vserver Vserver Vserver Vserver

$58901d

$S8201d

$58201d

$59001d

S$$920.d

S$5920.d

S88920.d
S$5800.d

S§820.d
S$5890.d

Linux enhanced operating system

Hardware

» V/server: Independent and protected environment with
Its own libraries, server versions, etc. Applications are
assigned a collection of vservers across multiple

machines (slice).

EECS 345 Distributed Systems
Northwestern University

Code migration

» |nstead of passing data around, why not moving code?
* What for?

— Improve load distribution in compute-intensive systems

— Save network resource and response time by moving
processing data closer to where the data is

— Improve parallelism w/o code complexities
» Mobile agents for web searches

— Dynamic configuration of distributed systems

 Instantiation of distributed system on dynamically available resources;
binding to service-specific, client-side code at invocation time

EECS 345 Distributed Systems
Northwestern University

Models for code migration

* Process seen as composed of three segments
— Code segment — set of instructions that make up the program
— Resource segment — references to external resources needed
— Execution segment — state of the process (e.g. stack, PC, ...)
* Some alternatives

— Weak/strong mobility — code or code and execution segments
— Sender or receiver initiated

— A new process for the R e
migration code? oA e
. . Weak mobility Zi;;i;ateeap:rocess
- C|0n|ng Instead / Receiver-initiated /target process
. . mobility xecute in
of migration e

Mobility mechanism

\

Strong mobility

Migrate process
Sender-initiated — g P

mobility .

Clone process

/N /N

Migrate process
Receiver-initiated / 9 P

mobility =

Clone process

EECS 345 Distributed Systems
Northwestern University

Migration and local resources

» Process-to-resource binding

— Binding by identifier — process is bound to a socket

— Binding by value — need only the value of a resource, e.g. standard

library

— Binding by type — need only a resource of a certain type, e.g. printer
« Resource-to-machine binding

— Unattached resources — easily moved, e.g. files

— Fastened resources — costly to move, e.g. large database

— Fixed resource — tightly bound to a location, e.g. local devices,

sockets
. Resource-to-machine binding
¢ E g " flle’ Unattached Fastened Fixed
memory Process- | By identifier MV (or GR) GR (or MV) GR
to-resource | By value CP (or MV,GR) GR (or CP) GR
page’ binding | By type RB (or MV,CP) | RB (or GR,CP) | RB (or GR)
SOCket? GR Establish a global systemwide reference

MV Move the resource
CP Copy the value of the resource
RB Rebind process to locally-available resource

EECS 345 Distributed Systems
Northwestern University

Migration in heterogeneous environments

» In heterogeneous settings, the target machine may not
be OK to execute the migrated code

» The definition of process/thread/processor context is
highly dependent on local hardware, OS and runtime
system

» Only solution: Make use of an abstract machine that is
implemented on different platforms

» Current solutions:
— Interpreted languages running on a VM (Java/JVM,; scripting
languages)
— Virtual machine monitors, allowing migration of complete OS
+ apps — a form of strong mobility

EECS 345 Distributed Systems
Northwestern University

Summary

* Processes are a fundamental piece of distributed
systems — how they are internally organized is key

* The basic client/server organization has a number of
Interesting detalls to work with
— From thin/fat clients to server designs for scalability and easy
of management
¢ Typically one thinks of moving data, but moving
processes has a number of interesting advantages
and technical complexities

— Virtual machines may help us deal with quite a few of the
technical issues

EECS 345 Distributed Systems
Northwestern University

	Processes in Distributed Systems
	Processes and threads
	Threads in distributed systems – clients
	Threads in distributed systems – servers
	Virtualization
	VM architectures
	Thin and fat clients
	Thin-client network computing
	Client-side software and transparency
	Server design
	Out-of-band communication
	Servers and state
	Servers and state
	Server clusters
	Example: PlanetLab
	Code migration
	Models for code migration
	Migration and local resources
	Migration in heterogeneous environments
	Summary

