
Today
Threads in distributed systems
Virtualization
Thin-client computing
Servers
Code migration

Processes in Distributed Systems

EECS 345 Distributed Systems
Northwestern University

Processes and threads

Processes offer concurrency transparency, but at a
relatively high price on performance
Threads offer concurrency without much less
transparency
– Applications with better performance that are harder to

code/debug

Advantages of multithreading
– No need to block with every system call
– Easy to exploit available parallelism in multiprocessors
– Cheaper communication between components than with IPC
– Better fit for most complex applications

Alternative ways to provide threads
– User-, kernel-level threads, LWP and scheduler activations

2

EECS 345 Distributed Systems
Northwestern University

Threads in distributed systems – clients

Client usage is mainly to hide network latency
E.g. multithreaded web client:
– Web browser scans an incoming HTML page, and finds that

more files need to be fetched
– Each file is fetched by a separate thread, each doing a

(blocking) HTTP request
– As files come in, the browser displays them

Multiple request-response calls to other machines:
– A client does several RPC calls at the same time, each one by

a different thread
– It then waits until all results have been returned
– Note: if calls are to different servers, we may have a linear

speed-up compared to doing calls one after the other

3

EECS 345 Distributed Systems
Northwestern University

Threads in distributed systems – servers

In servers, the main issue is improved performance
and better structure
Improve performance:
– Starting a thread to handle an incoming request is much

cheaper than starting a new process
– Having a single-threaded server prohibits simply scaling the

server to a multiprocessor system
– As with clients: hide network latency by reacting to next

request while previous one is being replied

Better structure:
– Most servers have high I/O demands. Using simple, well-

understood blocking calls simplifies the overall structure.
– Multithreaded programs tend to be smaller and easier to

understand due to simplified flow of control

4

EECS 345 Distributed Systems
Northwestern University

Virtualization

Virtualization is becoming increasingly important:
– Hardware changes faster than software
– Ease of portability and code migration
– Isolation of failing or attacked components

Virtualization can take place at very different levels,
strongly depending on the interfaces as offered by
various systems components:

5

EECS 345 Distributed Systems
Northwestern University

VM architectures

We should differentiate between process virtual
machines and virtual machine monitors:
a) Process VM: A program compiled to intermediate (portable)

code, which is then executed by a runtime system (e.g. Java
VM).

b) VMM: A separate software layer that mimics the instruction
set of hardware; a complete operating system and its
applications can be supported (e.g.: VMware).

6

EECS 345 Distributed Systems
Northwestern University

Ta
ne

Thin and fat clients

Client machines provide the means for users to
interact with remote servers
– Fat client – for each remote service, the client machine has a

separate counterpart (a)
– Thin client – client machine is just a terminal providing direct

access to remote services (b)

EECS 345 Distributed Systems
Northwestern University

Thin-client network computing

A major part of client-side software is focused on
(graphical) user interfaces.
– With X, the kernel and the application need not be on the

same machine

Compound documents: User interface is application
aware → inter application communication:
– Drag-and-drop: move objects across the screen to invoke

interaction with other applications (trash can)
– In-place editing: integrate several applications at user-

interface level (word processing + drawing facilities)

8

EECS 345 Distributed Systems
Northwestern University

Client-side software and transparency

Client-side software is often tailored for distribution
transparency
– Access transparency: client-side stubs for RPCs
– Location/migration transparency: let client-side software keep

track of actual location
– Replication transparency: multiple invocations handled by

client stub
– Failure transparency: mask server and communication failures

9

EECS 345 Distributed Systems
Northwestern University

Server design

Server – a process that waits for incoming service
requests at a specific transport address
Iterative vs. concurrent servers: Iterative servers can
handle only one client at a time, in contrast to
concurrent servers
In practice, there is a 1-to-1 mapping between port
and service, e.g. ftp: 21, smtp:25
Superservers: Servers that listen to several ports, i.e.,
provide several independent services; start a new
process to handle new requests (UNIX inetd/xinetd)
– For services with more permanent traffic get a dedicated

server

10

EECS 345 Distributed Systems
Northwestern University

Out-of-band communication

How to interrupt a server once it has accepted (or is in
the process of accepting) a service request?
Solution 1: Use a separate port for urgent data
(possibly per service request):
– Server has a separate thread (or process) waiting for

incoming urgent messages
– When urgent msg comes in, associated request is put on hold

• Require OS supports high-priority scheduling of specific threads or
processes

Solution 2: Use out-of-band communication facilities of
the transport layer:
– E.g. TCP allows to send urgent msgs in the same connection
– Urgent msgs can be caught using OS signaling techniques

11

EECS 345 Distributed Systems
Northwestern University

Servers and state

Stateless servers: Never keep accurate information
about the status of a client after having handled a
request:
– Don’t record whether a file has been opened (simply close it

again after access)
– Don’t promise to invalidate a client’s cache
– Don’t keep track of your clients

Consequences:
– Clients and servers are completely independent
– State inconsistencies due to client or server crashes are

reduced
– Possible loss of performance because, e.g., a server cannot

anticipate client behavior (think of prefetching file blocks)

12

EECS 345 Distributed Systems
Northwestern University

Servers and state

Stateful servers: Keeps track of the status of its
clients:
– Record that a file has been opened, so that prefetching can

be done
– Knows which data a client has cached, and allows clients to

keep local copies of shared data

Observation: The performance of stateful servers can
be extremely high, provided clients are allowed to
keep local copies. As it turns out, reliability is not a
major problem.

13

EECS 345 Distributed Systems
Northwestern University

Server clusters

Many server clusters are organized along three
different tiers:

Key element: The first tier is generally responsible for
passing requests to an appropriate server.
– May lead to a bottleneck.

Various solutions, but one
popular one is TCP-handoff:

14

EECS 345 Distributed Systems
Northwestern University

Example: PlanetLab

Different organizations contribute machines, which
they subsequently share for various experiments
Ensure that different distributed applications do not get
into each other’s way: virtualization:

Vserver: Independent and protected environment with
its own libraries, server versions, etc. Applications are
assigned a collection of vservers across multiple
machines (slice).

15

EECS 345 Distributed Systems
Northwestern University

Code migration

Instead of passing data around, why not moving code?
What for?
– Improve load distribution in compute-intensive systems
– Save network resource and response time by moving

processing data closer to where the data is
– Improve parallelism w/o code complexities

• Mobile agents for web searches

– Dynamic configuration of distributed systems
• Instantiation of distributed system on dynamically available resources;

binding to service-specific, client-side code at invocation time

16

EECS 345 Distributed Systems
Northwestern University

Models for code migration

Process seen as composed of three segments
– Code segment – set of instructions that make up the program
– Resource segment – references to external resources needed
– Execution segment – state of the process (e.g. stack, PC, …)

Some alternatives
– Weak/strong mobility – code or code and execution segments
– Sender or receiver initiated
– A new process for the

migration code?
– Cloning instead

of migration

17

EECS 345 Distributed Systems
Northwestern University

Migration and local resources
Process-to-resource binding
– Binding by identifier – process is bound to a socket
– Binding by value – need only the value of a resource, e.g. standard

library
– Binding by type – need only a resource of a certain type, e.g. printer

Resource-to-machine binding
– Unattached resources – easily moved, e.g. files
– Fastened resources – costly to move, e.g. large database
– Fixed resource – tightly bound to a location, e.g. local devices,

sockets

E.g. file,
memory
page,
socket?

18

EECS 345 Distributed Systems
Northwestern University

Migration in heterogeneous environments

In heterogeneous settings, the target machine may not
be OK to execute the migrated code
The definition of process/thread/processor context is
highly dependent on local hardware, OS and runtime
system
Only solution: Make use of an abstract machine that is
implemented on different platforms
Current solutions:
– Interpreted languages running on a VM (Java/JVM; scripting

languages)
– Virtual machine monitors, allowing migration of complete OS

+ apps – a form of strong mobility

19

EECS 345 Distributed Systems
Northwestern University

20

Summary

Processes are a fundamental piece of distributed
systems – how they are internally organized is key

The basic client/server organization has a number of
interesting details to work with
– From thin/fat clients to server designs for scalability and easy

of management

Typically one thinks of moving data, but moving
processes has a number of interesting advantages
and technical complexities
– Virtual machines may help us deal with quite a few of the

technical issues

	Processes in Distributed Systems
	Processes and threads
	Threads in distributed systems – clients
	Threads in distributed systems – servers
	Virtualization
	VM architectures
	Thin and fat clients
	Thin-client network computing
	Client-side software and transparency
	Server design
	Out-of-band communication
	Servers and state
	Servers and state
	Server clusters
	Example: PlanetLab
	Code migration
	Models for code migration
	Migration and local resources
	Migration in heterogeneous environments
	Summary

