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Processes and threads

Processes offer concurrency transparency, but at a 
relatively high price on performance
Threads offer concurrency without much less 
transparency
– Applications with better performance that are harder to 

code/debug

Advantages of multithreading
– No need to block with every system call
– Easy to exploit available parallelism in multiprocessors
– Cheaper communication between components than with IPC
– Better fit for most complex applications

Alternative ways to provide threads
– User-, kernel-level threads, LWP and scheduler activations
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Threads in distributed systems – clients

Client usage is mainly to hide network latency
E.g. multithreaded web client:
– Web browser scans an incoming HTML page, and finds that 

more files need to be fetched
– Each file is fetched by a separate thread, each doing a 

(blocking) HTTP request
– As files come in, the browser displays them

Multiple request-response calls to other machines:
– A client does several RPC calls at the same time, each one by 

a different thread
– It then waits until all results have been returned
– Note: if calls are to different servers, we may have a linear 

speed-up compared to doing calls one after the other

3



EECS 345 Distributed Systems 
Northwestern University

Threads in distributed systems – servers

In servers, the main issue is improved performance 
and better structure
Improve performance:
– Starting a thread to handle an incoming request is much 

cheaper than starting a new process
– Having a single-threaded server prohibits simply scaling the 

server to a multiprocessor system
– As with clients: hide network latency by reacting to next 

request while previous one is being replied

Better structure:
– Most servers have high I/O demands. Using simple, well-

understood blocking calls simplifies the overall structure.
– Multithreaded programs tend to be smaller and easier to 

understand due to simplified flow of control
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Virtualization

Virtualization is becoming increasingly important:
– Hardware changes faster than software
– Ease of portability and code migration
– Isolation of failing or attacked components

Virtualization can take place at very different levels, 
strongly depending on the interfaces as offered by 
various systems components:
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VM architectures

We should differentiate between process virtual 
machines and virtual machine monitors:
a) Process VM: A program compiled to intermediate (portable) 

code, which is then executed by a runtime system (e.g. Java 
VM).

b) VMM: A separate software layer that mimics the instruction 
set of hardware; a complete operating system and its 
applications can be supported (e.g.: VMware).
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Thin and fat clients

Client machines provide the means for users to 
interact with remote servers
– Fat client – for each remote service, the client machine has a 

separate counterpart (a)
– Thin client – client machine is just a terminal providing direct 

access to remote services (b)
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Thin-client network computing

A major part of client-side software is focused on 
(graphical) user interfaces.
– With X, the kernel and the application  need not be on the 

same machine

Compound documents: User interface is application 
aware → inter application communication:
– Drag-and-drop: move objects across the screen to invoke 

interaction with other applications (trash can)
– In-place editing: integrate several applications at user-

interface level (word processing + drawing facilities)
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Client-side software and transparency

Client-side software is often tailored for distribution 
transparency
– Access transparency: client-side stubs for RPCs
– Location/migration transparency: let client-side software keep 

track of actual location
– Replication transparency: multiple invocations handled by 

client stub
– Failure transparency: mask server and communication failures
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Server design

Server – a process that waits for incoming service 
requests at a specific transport address
Iterative vs. concurrent servers: Iterative servers can 
handle only one client at a time, in contrast to 
concurrent servers
In practice, there is a 1-to-1 mapping between port 
and service, e.g. ftp: 21, smtp:25
Superservers: Servers that listen to several ports, i.e., 
provide several independent services; start a new 
process to handle new requests (UNIX inetd/xinetd)
– For services with more permanent traffic  get a dedicated 

server

10



EECS 345 Distributed Systems 
Northwestern University

Out-of-band communication

How to interrupt a server once it has accepted (or is in 
the process of accepting) a service request?
Solution 1: Use a separate port for urgent data 
(possibly per service request):
– Server has a separate thread (or process) waiting for 

incoming urgent messages
– When urgent msg comes in, associated request is put on hold

• Require OS supports high-priority scheduling of specific threads or 
processes

Solution 2: Use out-of-band communication facilities of 
the transport layer:
– E.g. TCP allows to send urgent msgs in the same connection
– Urgent msgs can be caught using OS signaling techniques
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Servers and state

Stateless servers: Never keep accurate information 
about the status of a client after having handled a 
request:
– Don’t record whether a file has been opened (simply close it 

again after access)
– Don’t promise to invalidate a client’s cache
– Don’t keep track of your clients

Consequences:
– Clients and servers are completely independent
– State inconsistencies due to client or server crashes are 

reduced
– Possible loss of performance because, e.g., a server cannot 

anticipate client behavior (think of prefetching file blocks)
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Servers and state

Stateful servers: Keeps track of the status of its 
clients:
– Record that a file has been opened, so that prefetching can 

be done
– Knows which data a client has cached, and allows clients to 

keep local copies of shared data

Observation: The performance of stateful servers can 
be extremely high, provided clients are allowed to 
keep local copies. As it turns out, reliability is not a 
major problem.
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Server clusters

Many server clusters are organized along three 
different tiers:

Key element: The first tier is generally responsible for 
passing requests to an appropriate server.
– May lead to a bottleneck.

Various solutions, but one 
popular one is TCP-handoff:
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Example: PlanetLab

Different organizations contribute machines, which 
they subsequently share for various experiments
Ensure that different distributed applications do not get 
into each other’s way:  virtualization:

Vserver: Independent and protected environment with 
its own libraries, server versions, etc. Applications are 
assigned a collection of vservers across multiple 
machines (slice).
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Code migration

Instead of passing data around, why not moving code?
What for?
– Improve load distribution in compute-intensive systems
– Save network resource and response time by moving 

processing data closer to where the data is
– Improve parallelism w/o code complexities

• Mobile agents for web searches

– Dynamic configuration of distributed systems
• Instantiation of distributed system on dynamically available resources; 

binding to service-specific, client-side code at invocation time
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Models for code migration

Process seen as composed of three segments
– Code segment – set of instructions that make up the program
– Resource segment – references to external resources needed
– Execution segment – state of the process (e.g. stack, PC, …)

Some alternatives
– Weak/strong mobility – code or code and execution segments
– Sender or receiver initiated
– A new process for the 

migration code?
– Cloning instead 

of migration
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Migration and local resources
Process-to-resource binding
– Binding by identifier – process is bound to a socket
– Binding by value – need only the value of a resource, e.g. standard 

library
– Binding by type – need only a resource of a certain type, e.g. printer

Resource-to-machine binding
– Unattached resources – easily moved, e.g. files
– Fastened resources – costly to move, e.g. large database
– Fixed resource – tightly bound to a location, e.g. local devices, 

sockets 

E.g. file, 
memory
page, 
socket?
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Migration in heterogeneous environments

In heterogeneous settings, the target machine may not 
be OK to execute the migrated code
The definition of process/thread/processor context is 
highly dependent on local hardware, OS and runtime 
system
Only solution: Make use of an abstract machine that is 
implemented on different platforms
Current solutions:
– Interpreted languages running on a VM (Java/JVM; scripting 

languages)
– Virtual machine monitors, allowing migration of complete OS 

+ apps – a form of strong mobility
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Summary

Processes are a fundamental piece of distributed 
systems – how they are internally organized is key

The basic client/server organization has a number of 
interesting details to work with
– From thin/fat clients to server designs for scalability and easy 

of management

Typically one thinks of moving data, but moving 
processes has a number of interesting advantages 
and technical complexities
– Virtual machines may help us deal with quite a few of the 

technical issues
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