
Today
Software architectures
Systems architectures
Architectures & middleware
Self-* in distributed systems

Distributed Systems Architectures

EECS 345 Distributed Systems
Northwestern University

Software and system architectures

Distributed systems are complex pieces of software –
to master complexity: good organization
Different ways to look at organization of distributed
systems – two obvious ones
– Software architecture – logical organization of software

components – how the various software components are
organized and how they should interact

– System architecture – their physical realization – the
instantiation of software components on real machines

2

EECS 345 Distributed Systems
Northwestern University

Architectural styles

Organize into logically different components, and
distribute those components over the various
machines
– Component: modular, replaceable unit with well defined I/F
– Connector: a mechanism that mediates communication,

coordination or cooperation among components

Using components and connectors, different
architectural styles

3

Layered
Object-based

EECS 345 Distributed Systems
Northwestern University

Architecture styles

Decoupling processes in
– Space (“anonymous” or referential decoupling) and
– Time (“asynchronous” or temporal decoupling)

Alternative styles

4

Event-based

Shared data-space

EECS 345 Distributed Systems
Northwestern University

System arch – vertical distribution

Basic client/server model
– Server processes offer services use by clients processes
– Clients follow request/reply model in using services
– Clients/servers can be distributed across different machines

Traditional three-layered view
– User-interface layer – an application’s user interface
– Processing layer – application, i.e. without specific data
– Data layer – data to manipulate through the application

5

Internet search engine

EECS 345 Distributed Systems
Northwestern University

System arch – vertical distribution

Logically
– Single-tiered: dumb terminal/mainframe configuration
– Two-tiered: client/single server configuration
– Three-tiered: each layer on separate machine

Physically
– Distributing components into client and server machines
– With a two-tiered architecture

6

Thin clients Fat clients

EECS 345 Distributed Systems
Northwestern University

System arch – horizontal distribution

In the last couple of years we have been seeing an
impressive growth in P2P systems
– Structured, DHT-based, P2P: nodes are organized following a

specific distributed data structure
– Unstructured P2P: nodes have randomly selected neighbors
– Hybrid P2P: some nodes are appointed special functions in a

well-organized fashion

In all cases, we are dealing with overlay networks:
data is routed over connections setup between the
nodes

7

EECS 345 Distributed Systems
Northwestern University

Structured P2P systems

Organize the nodes in a structured overlay network
such as a logical ring, and make specific nodes
responsible for services based only on their ID
The system provides an operation LOOKUP(key) to
route the lookup request to the associated node
Node join is straightforward
– Generate a random id
– Do a lookup on id, getting

the succ(id)
– Contact succ(id), and its

predecessor, to insert itself
in the ring

– Transfer data items from succ(id)
to new node

8

Mapping data
items onto Chord
nodes

EECS 345 Distributed Systems
Northwestern University

Structured P2P systems

CAN – Content Addressable Network
Organize nodes in a d-dimensional space and let
every node take the responsibility for data in a specific
region
When a node joins split a region
Leaving it’s a bit more complicated

9

EECS 345 Distributed Systems
Northwestern University

Unstructured P2P systems

Many unstructured P2P systems attempt to maintain a
random graph:
Basic idea – each node contacts a randomly selected
other node
– Let each peer maintain a partial view of the network,

consisting of c other nodes
– Each node P periodically selects a node Q from its partial

view
– P and Q exchange information and exchange members from

their respective partial views

An exclusive pull/push model can easily conduct to
disconnected overlays
In general, much easier to leave/join the network

10

EECS 345 Distributed Systems
Northwestern University

Super-peers in unstructured P2P systems

Sometimes it may help break with the symmetric
nature of P2P – super/ultra-peers
Some obvious examples
– Transiency – pick the most stable ones
– Search – have them keep the indexes for scalable searches
– Organization – have them monitor the state of the network

11

EECS 345 Distributed Systems
Northwestern University

Combining structured and unstructured

Distinguish two layers: (1) maintain random partial
views in lowest layer; (2) be selective on who you
keep in higher-layer partial view
Lower layer feeds upper layer with random nodes;
upper layer is selective when it comes to keeping
references
– Instead of simple random, ranking peers based on some

simple function (latency, semantic) may help

12

EECS 345 Distributed Systems
Northwestern University

Hybrid architectures

Client-server architectures and P2P solutions
E.g. Edge-server architectures often used for Content
Delivery Networks
Edge-servers are placed at the edge of the network
Responsible for caching, filtering, transcoding …
Clients connect through the edge-server

13

EECS 345 Distributed Systems
Northwestern University

Hybrid architectures

E.g. BitTorrent – client-server to connect to the swarm
and P2P from then on
Files are splits into chunks, peers swap chunks within
a swarm
Get a torrent from a web site
Contact the tracker listed in the torrent
Get a set of peers from the tracker and connect to the
swarm

14

EECS 345 Distributed Systems
Northwestern University

Architecture and middleware

A key goal for middleware is to provide distribution
transparency
Typically, however, middleware adopts particular
architecture styles
– Makes it simpler to develop applications for that style
– Makes it hard/inefficient to do it with any other!

To alternatives – build different versions or make them
easy to adapt dynamically
Interceptors: Intercept the usual flow of control when
invoking a remote object
– Make replication transparent
– Make handling MTU transparent
– …

15

EECS 345 Distributed Systems
Northwestern University

Adaptive middleware

To deal with changing environments/demands –
adaptive middleware
To facilitate software adaptation
– Separation of concerns: Separate general functionalities and

later weave them together into an implementation
– Computational reflection: Let program inspect itself at runtime

and adapt/change its settings dynamically if necessary
– Component-based design: Organize a distributed application

through components that can be dynamically replaced when
needed

Nothing that simple – component interdependencies?
We do need adaptive systems, but is this a software or
a system issue? i.e. adaptive software or adaptive
systems?

16

EECS 345 Distributed Systems
Northwestern University

Self-management in distributed systems

Systems should be adaptable not in terms of their
software components, but rather execution behavior
Self-*/Autonomics systems – self-configurable, Self-
manageable, Self-healing, Self-optimizing
– Commonly, organized as a feedback control system

• System needs to be monitored
• Collected measurements must be analyzed to decide on adaptation
• Different mechanisms must be used to enact changes
• (Not unlike manual management)

17

EECS 345 Distributed Systems
Northwestern University

Self-management in Globus

Collaborative CDN – it analyzes traces to decide
where replicas of Web content should be placed.
Decisions are driven by a general cost model
Globule origin server
– Collects traces
– Does whatif analysis by checking what would have happened

if page P would have been placed at edge server S.
– Many strategies are evaluated, and the best one is chosen.

18

EECS 345 Distributed Systems
Northwestern University

19

Summary

Organization to master complexity, both on how the
components are interconnected and instantiated
There’s a strong connection between software/system
architectures and (self-) adaptation
Should adaptation to environmental changes be seen
as a software or a system issue?

	Distributed Systems Architectures
	Software and system architectures
	Architectural styles
	Architecture styles
	System arch – vertical distribution
	System arch – vertical distribution
	System arch – horizontal distribution
	Structured P2P systems
	Structured P2P systems
	Unstructured P2P systems
	Super-peers in unstructured P2P systems
	Combining structured and unstructured
	Hybrid architectures
	Hybrid architectures
	Architecture and middleware
	Adaptive middleware
	Self-management in distributed systems
	Self-management in Globus
	Summary

