Distributed Systems Architectures

Today

® Software architectures

® Systems architectures

® Architectures & middleware
® Self-* in distributed systems

Software and system architectures

= Distributed systems are complex pieces of software —
to master complexity: good organization

» Different ways to look at organization of distributed
systems — two obvious ones

— Software architecture — logical organization of software
components — how the various software components are
organized and how they should interact

— System architecture — their physical realization — the
Instantiation of software components on real machines

EECS 345 Distributed Systems
Northwestern University

Architectural styles

= Organize into logically different components, and
distribute those components over the various

machines
— Component: modular, replaceable unit with well defined I/F

— Connector: a mechanism that mediates communication,
coordination or cooperation among components

» Using components and connectors, different
architectural styles

Layer N Object-based Object Object

A

Layered v
Layer N-1

Method call

Request ! T Response
flow g flow

U

Layer 2

A

Y

Layer 1

EECS 345 Distributed Systems
Northwestern University

Architecture styles

= Decoupling processes in
— Space (“anonymous” or referential decoupling) and
— Time (“asynchronous” or temporal decoupling)

» Alternative styles

Event-based

Component

A
Event delivery

Component

A

< Event bus
A

Publish

Component

Y
> Component Component

Shared data-space

Data delivery Publish

Shared (persistent) data space

EECS 345 Distributed Systems
Northwestern University

System arch — vertical distribution

= Basic client/server model
— Server processes offer services use by clients processes
— Clients follow request/reply model in using services
— Clients/servers can be distributed across different machines

« Traditional three-layered view
— User-interface layer — an application’s user interface

— Processing layer — application, i.e. without specific data
— Data layer — data to manipulate through the application

-interf
User interface } llé\s/zlr R
\ HTML page
Keyword expression containing list
HTML
. generator Processing
Internet search engine o 1 I
generator of page titles
Ranking
Database queries algorithm

Web page titles
with meta-information
Database Data level

with Web pages

EECS 345 Distributed Systems
Northwestern University

System arch — vertical distribution

» Logically
— Single-tiered: dumb terminal/mainframe configuration
— Two-tiered: client/single server configuration
— Three-tiered: each layer on separate machine
» Physically
— Distributing components into client and server machines
— With a two-tiered architecture

Client machine

Fat clients

User interface User interface User interface User interface

Application Application Application

_____ ¢'““‘--~--__H___$h_ _rd Database

User interface P ih-“""‘““———-$ ________
Application Application Application . ,,/'/—
Database Database Database Database [Database ‘

Server machine

(a) (b) (c) (d) (e)

EECS 345 Distributed Systems
Northwestern University

System arch — horizontal distribution

= In the last couple of years we have been seeing an
Impressive growth in P2P systems

— Structured, DHT-based, P2P: nodes are organized following a
specific distributed data structure

— Unstructured P2P: nodes have randomly selected neighbors
— Hybrid P2P: some nodes are appointed special functions in a
well-organized fashion
» In all cases, we are dealing with overlay networks:

data is routed over connections setup between the
nodes

EECS 345 Distributed Systems
Northwestern University

Structured P2P systems

» Organize the nodes in a structured overlay network
such as a logical ring, and make specific nodes
responsible for services based only on their ID

* The system provides an operation LOOKUP(key) to
route the lookup request to the associated node

_ . . Actual nod
« Node join is straightforward /@/ \Gi ST
— Generate a random id 14 {13,14,15) {0,1)
— Do alookup on id, getting {-1-5} _,;-é-::
the succ(id)
— Contact succ(id), and its G% (8,9,10,11,12} {2,3,4}%)
predecessor, to insert itself A Associated oy
in the ring A1 Cialeleys L5
| N ./
— Transfer data items from succ(id) .10 (5,6,7)

{6
to new node 1

" Mapping data

items onto Chord

EECS 345 Distributed Systems nodes
Northwestern University

Structured P2P systems

CAN — Content Addressable Network

» QOrganize nodes in a d-dimensional space and let
every node take the responsibility for data in a specific
region

When a node joins = split a region

» Leaving it's a bit more complicated

Keys associated with
node at (0.6,0.7)

0.1) \ (1,1)

\ (0.9,0.9) (0.9,0.9)
[] []
(0.260.8) (0.2‘0.8)
(0.660.7) (0.6‘0.7)
Actual node (0'960'6) (0.9‘0.6)
(0.2,0.45)
(0.2,0.3)
[]
(0.7,0.2) (0.7,0.2)
L) (0.2,0.15) .
(0,0) (1,0)

(a)

EECS 345 Distributed Systems
Northwestern University

Unstructured P2P systems

Many unstructured P2P systems attempt to maintain a
random graph:

Basic idea — each node contacts a randomly selected
other node

— Let each peer maintain a partial view of the network,
consisting of ¢ other nodes

— Each node P periodically selects a node Q from its partial
view
— P and Q exchange information and exchange members from
their respective partial views
An exclusive pull/push model can easily conduct to

disconnected overlays
In general, much easier to leave/join the network

EECS 345 Distributed Systems
Northwestern University

Super-peers in unstructured P2P systems

=« Sometimes it may help break with the symmetric
nature of P2P — super/ultra-peers

* Some obvious examples
— Transiency — pick the most stable ones
— Search — have them keep the indexes for scalable searches
— Organization — have them monitor the state of the network

Regular peer

Superpeer

Superpeer
network

EECS 345 Distributed Systems
Northwestern University

Combining structured and unstructured

» Distinguish two layers: (1) maintain random partial
views in lowest layer; (2) be selective on who you
keep in higher-layer partial view

» Lower layer feeds upper layer with random nodes;
upper layer is selective when it comes to keeping
references

— Instead of simple random, ranking peers based on some
simple function (latency, semantic) may help

Structured Protocq! L3k 4 Links to topology-
Spiseilo ——— 5 specific other nodes
overlay overlay [—__

A
Random peer

Random Pro(’;ocoll fo(; :;///—: Links to randomly
overlay Ll —— 5 chosen other nodes
view \

EECS 345 Distributed Systems
Northwestern University

Hybrid architectures

Client-server architectures and P2P solutions

» E.g. Edge-server architectures often used for Content
Delivery Networks

» Edge-servers are placed at the edge of the network
» Responsible for caching, filtering, transcoding ...
» Clients connect through the edge-server

] [[Client Content provider

EECS 345 Distributed Systems
Northwestern University

Hybrid architectures

E.g. BitTorrent — client-server to connect to the swarm
and P2P from then on

Files are splits into chunks, peers swap chunks within
a swarm

Get a torrent from a web site
Contact the tracker listed In the torrent

Get a set of peers from the tracker and connect to the
swarm

Client node
P K out of N nodes

<ﬁ_ookup(F) Node 1
A BitTorrent .| .torrent file .| List of nodes | Node 2

Web page | Ref.to for F Ref. to storing F

file tracker

Web server server File server Tracker

Node N

EECS 345 Distributed Systems
Northwestern University

Architecture and middleware

» A key goal for middleware is to provide distribution
transparency

» Typically, however, middleware adopts particular
architecture styles
— Makes it simpler to develop applications for that style
— Makes it hard/inefficient to do it with any other!

» To alternatives — build different versions or make them
easy to adapt dynamically

» Interceptors: Intercept the usual flow of control when
Invoking a remote object
— Make replication transparent
— Make handling MTU transparent

EECS 345 Distributed Systems
Northwestern University

Adaptive middleware

To deal with changing environments/demands —
adaptive middleware

To facilitate software adaptation

— Separation of concerns: Separate general functionalities and
later weave them together into an implementation

— Computational reflection: Let program inspect itself at runtime
and adapt/change its settings dynamically if necessary

— Component-based design: Organize a distributed application
through components that can be dynamically replaced when
needed

Nothing that simple — component interdependencies?

We do need adaptive systems, but is this a software or
a system issue? i.e. adaptive software or adaptive
systems?

EECS 345 Distributed Systems
Northwestern University

Self-management in distributed systems

= Systems should be adaptable not in terms of their
software components, but rather execution behavior

» Self-*/Autonomics systems — self-configurable, Self-
manageable, Self-healing, Self-optimizing

— Commonly, organized as a feedback control system
» System needs to be monitored
» Collected measurements must be analyzed to decide on adaptation
» Different mechanisms must be used to enact changes
* (Not unlike manual management)

Uncontrollable parameters (disturbance / noise)

Y

Initial configuration ~— Corrections . Observed output
* 7 Core of distributed system

A
+/- +/-
+-
- Reference input =)
Adjustment Metric
measures l estimation

A

Y

A

Analysis

Measured output

Adjustment triggers

EECS 345 Distributed Systems
Northwestern University

Self-management in Globus

= Collaborative CDN — it analyzes traces to decide
where replicas of Web content should be placed.
Decisions are driven by a general cost model

» Globule origin server
— Collects traces

— Does whatif analysis by checking what would have happened
If page P would have been placed at edge server S.

— Many strategies are evaluated, and the best one is chosen.

Orlgln server

lll\

~A Core Internet

Replica server l.
Enterprlse network

L1 [Client L1 [] Client

EECS 345 Distributed Systems
Northwestern University

Summary

* Organization to master complexity, both on how the
components are interconnected and instantiated

* There’s a strong connection between software/system
architectures and (self-) adaptation

¢ Should adaptation to environmental changes be seen
as a software or a system issue?

EECS 345 Distributed Systems
Northwestern University

	Distributed Systems Architectures
	Software and system architectures
	Architectural styles
	Architecture styles
	System arch – vertical distribution
	System arch – vertical distribution
	System arch – horizontal distribution
	Structured P2P systems
	Structured P2P systems
	Unstructured P2P systems
	Super-peers in unstructured P2P systems
	Combining structured and unstructured
	Hybrid architectures
	Hybrid architectures
	Architecture and middleware
	Adaptive middleware
	Self-management in distributed systems
	Self-management in Globus
	Summary

