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Software and system architectures

= Distributed systems are complex pieces of software —
to master complexity: good organization

» Different ways to look at organization of distributed
systems — two obvious ones

— Software architecture — logical organization of software
components — how the various software components are
organized and how they should interact

— System architecture — their physical realization — the
Instantiation of software components on real machines
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Architectural styles

= Organize into logically different components, and
distribute those components over the various

machines
— Component: modular, replaceable unit with well defined I/F

— Connector: a mechanism that mediates communication,
coordination or cooperation among components

» Using components and connectors, different
architectural styles
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Architecture styles

= Decoupling processes in
— Space (“anonymous” or referential decoupling) and
— Time (“asynchronous” or temporal decoupling)

» Alternative styles
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System arch — vertical distribution

= Basic client/server model
— Server processes offer services use by clients processes
— Clients follow request/reply model in using services
— Clients/servers can be distributed across different machines

« Traditional three-layered view
— User-interface layer — an application’s user interface

— Processing layer — application, i.e. without specific data
— Data layer — data to manipulate through the application
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System arch — vertical distribution

» Logically
— Single-tiered: dumb terminal/mainframe configuration
— Two-tiered: client/single server configuration
— Three-tiered: each layer on separate machine
» Physically
— Distributing components into client and server machines
— With a two-tiered architecture
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System arch — horizontal distribution

= In the last couple of years we have been seeing an
Impressive growth in P2P systems

— Structured, DHT-based, P2P: nodes are organized following a
specific distributed data structure

— Unstructured P2P: nodes have randomly selected neighbors
— Hybrid P2P: some nodes are appointed special functions in a
well-organized fashion
» In all cases, we are dealing with overlay networks:

data is routed over connections setup between the
nodes
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Structured P2P systems

» Organize the nodes in a structured overlay network
such as a logical ring, and make specific nodes
responsible for services based only on their ID

* The system provides an operation LOOKUP(key) to
route the lookup request to the associated node
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Structured P2P systems

CAN — Content Addressable Network

» QOrganize nodes in a d-dimensional space and let
every node take the responsibility for data in a specific
region

When a node joins = split a region

» Leaving it's a bit more complicated
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Unstructured P2P systems

Many unstructured P2P systems attempt to maintain a
random graph:

Basic idea — each node contacts a randomly selected
other node

— Let each peer maintain a partial view of the network,
consisting of ¢ other nodes

— Each node P periodically selects a node Q from its partial
view
— P and Q exchange information and exchange members from
their respective partial views
An exclusive pull/push model can easily conduct to

disconnected overlays
In general, much easier to leave/join the network
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Super-peers in unstructured P2P systems

=« Sometimes it may help break with the symmetric
nature of P2P — super/ultra-peers

* Some obvious examples
— Transiency — pick the most stable ones
— Search — have them keep the indexes for scalable searches
— Organization — have them monitor the state of the network
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Combining structured and unstructured

» Distinguish two layers: (1) maintain random partial
views in lowest layer; (2) be selective on who you
keep in higher-layer partial view

» Lower layer feeds upper layer with random nodes;
upper layer is selective when it comes to keeping
references

— Instead of simple random, ranking peers based on some
simple function (latency, semantic) may help
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Hybrid architectures

Client-server architectures and P2P solutions

» E.g. Edge-server architectures often used for Content
Delivery Networks

» Edge-servers are placed at the edge of the network
» Responsible for caching, filtering, transcoding ...
» Clients connect through the edge-server

] [ [ Client Content provider
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Hybrid architectures

E.g. BitTorrent — client-server to connect to the swarm
and P2P from then on

Files are splits into chunks, peers swap chunks within
a swarm

Get a torrent from a web site
Contact the tracker listed In the torrent

Get a set of peers from the tracker and connect to the
swarm
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Architecture and middleware

» A key goal for middleware is to provide distribution
transparency

» Typically, however, middleware adopts particular
architecture styles
— Makes it simpler to develop applications for that style
— Makes it hard/inefficient to do it with any other!

» To alternatives — build different versions or make them
easy to adapt dynamically

» Interceptors: Intercept the usual flow of control when
Invoking a remote object
— Make replication transparent
— Make handling MTU transparent
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Adaptive middleware

To deal with changing environments/demands —
adaptive middleware

To facilitate software adaptation

— Separation of concerns: Separate general functionalities and
later weave them together into an implementation

— Computational reflection: Let program inspect itself at runtime
and adapt/change its settings dynamically if necessary

— Component-based design: Organize a distributed application
through components that can be dynamically replaced when
needed

Nothing that simple — component interdependencies?

We do need adaptive systems, but is this a software or
a system issue? i.e. adaptive software or adaptive
systems?
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Self-management in distributed systems

= Systems should be adaptable not in terms of their
software components, but rather execution behavior

» Self-*/Autonomics systems — self-configurable, Self-
manageable, Self-healing, Self-optimizing

— Commonly, organized as a feedback control system
» System needs to be monitored
» Collected measurements must be analyzed to decide on adaptation
» Different mechanisms must be used to enact changes
* (Not unlike manual management)
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Self-management in Globus

= Collaborative CDN — it analyzes traces to decide
where replicas of Web content should be placed.
Decisions are driven by a general cost model

» Globule origin server
— Collects traces

— Does whatif analysis by checking what would have happened
If page P would have been placed at edge server S.

— Many strategies are evaluated, and the best one is chosen.
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Summary

* Organization to master complexity, both on how the
components are interconnected and instantiated

* There’s a strong connection between software/system
architectures and (self-) adaptation

¢ Should adaptation to environmental changes be seen
as a software or a system issue?
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