
Semaphores & Monitors

Today
! Semaphores
! Monitors
! … and some other primitives

Next time
! Deadlocks

Last time - locks

! Memory objects with two operations
–  acquire()- Prevents progress of the thread until the lock

can be acquired
–  release()

! Come in two varieties – spinning and blocking
–  Spin if you expect a short wait and there are multiple cores

–  Block if there’s only one core or you expect a long wait
! Of course, both operations must be atomic

–  Need hw help – TSL or xchg

2

acquire (lock) {
 while(lock->held); // caller busy waits

 lock->held = 1;
}

while(xchg(&lk−>locked, 1) != 0)

3

Semaphores

! A synchronization primitive
! Higher level of abstraction than locks
! Invented by Dijkstra in ‘68 as part of THE operating

system
! Atomically manipulated by two operations

–  Down(sem) /wait/P
•  Block until semaphore sem > 0, then substract 1 from sem and proceed
•  P – not really for proberen or passeer but for a made-up word prolaag –

“try to reduce”

–  Up(sem) /signal/V
•  Add 1 to sem
•  V – verhogen – increase in Dutch

4

Blocking in semaphores

! Each semaphore has an associated queue of
processes/threads
–  P/wait/down(sem)

•  If sem was “available” (>0), decrement sem & let thread continue
•  If sem was “unavailable” (<=0), place thread on associated

queue; run some other thread

typedef struct {
 int value;
 struct thread *L;
} semaphore;

down(S):
 --Sem.value;
 if (Sem.value < 0){
 add this thread to Sem.L;
 block;

5

Semaphores

! …
–  V/signal/up(sem)

•  If thread(s) are waiting on the queue, unblock one
•  If no threads are waiting, increment sem

–  The signal is “remembered” for next time up(sem) is called
•  Might as well let the “up-ing” thread continue execution

! With multiple CPUs – lock semaphore with TSL
! But then how’s this different from previous busy-

waiting?

typedef struct {
 int value;
 struct thread *L;
} semaphore;

up(S):
 Sem.value++;
 if (Sem.value <= 0) {
 remove a process P from Sem.L;
 wakeup(P);
 }

6

Semaphores

Operation Value Sem.L CR
 1 {} <>
P1 down
P2 down
P3 down
P1 up

down(Sem):
--Sem.value;
if (Sem.value < 0){
 add this thread to Sem.L;
 block;
}

up(Sem):
Sem.value++;
if (S.value <= 0) {
 remove a thread P from Sem.L;
 wakeup(P);
}

-2 {P2,P3} P1
-1 {P3} P2

-1 {P2} P1
0 {} P1

7

Types of semaphores

! Binary semaphores – mutex
–  Sem is initialized to 1
–  Used to guarantee mutual exclusion
–  Useful with thread packages

! Counting semaphores
–  Let N threads into critical section, not just one
–  Sem is initialized to N, number of (identical) units available
–  Allow threads to enter as long as there are units available

mutex_unlock:
 MOVE MUTEX, #0
 RET

mutex_lock:
 TSL REGISTER, MUTEX
 CMP REGISTER, #0
 JXE ok

 CALL thread_yield
 JMP mutex_lock
ok: RET

8

Semaphores

! Using both counting semaphores and mutexs

Producer
while (TRUE){

 item = produce_item();

 down(empty);

 down(mutex);

 insert_item(item);

 up(mutex);

 up(full);

}

Consumer
while (TRUE){

 down(full);

 down(mutex);

 item = remove_item();

 up(mutex);

 up(empty);

 consume_item(item);

}

semaphore empty, // # of empty buffers, set to all
 full, // count of full buffers, set to 0
 mutex; // initially 1

Readers-writers problem

! Model access to database
! One shared database

–  Multiple readers allowed at once
–  Only one writer allowed at a time

•  If writers is in, nobody else is

9

semaphore db, // mutex for writers (only one) and
 // first/last reader
 mutex; // mutual exclusion for rc upate
int rc; // read count or number of readers in

void writer(void)
{
 while(TRUE) {
 think_up_data();
 down(&db);
 write_db();
 up(&db);
 }
}

10

Readers-writers problem

void reader(void)
{
 while(TRUE) {
 down(&mutex);
 ++rc;
 if (rc == 1) down(&db);

 up(&mutex);

 read_db();

 down(&mutex);
 --rc;
 if (rc == 0) up(&db);
 up(&mutex);

 use_data();
 }
}

What problem do you see for the writer?

Idea for an alternative solution: When a reader arrives, if there’s a
writer waiting, the reader could be suspended behind the writer
instead of being immediately admitted.

Mutexes in Pthreads

! Basic mechanism – mutex

! Also supports conditions variables
–  Typically used to block threads until a condition is met
–  Must always be associated with a mutex to avoid a race

condition between a thread preparing to wait and another one
signaling it (signal arriving before the thread is actually
waiting)

11

pthread_mutex_init – create it
pthread_mutex_destroy – destroy it
pthread_mutex_lock – acquire it or block
pthread_mutex_trylock – acquire or fail (you can spin then)
pthread_mutex_unlock – release it

pthread_cond_init – create it
pthread_cond_destroy – destroy it
pthrad_cond_wait – yield until the condition is satisfied
pthread_cond_signal – restart one of the threads waiting on it
pthread_broadcast – restart all threads waiting on it

12

Mutexes in Pthreads
pthread_mutex_t mutex;
pthread_cond_t condc, condp;

void *producer(void *ptr)
{
 int i;

 for (i = 1; i <= MAX; i++) {
 pthread_mutex_lock(&mutex);
 while (buffer !=0) pthread_cond_wait(&condp, &mutex);
 buffer = i;
 ptread_cond_signal(&condc); /* wakeup consumer */
 pthread_mutex_unlock(&mutex);
 }
 pthread_exit(0);
}

void *consumer(void *ptr)
{
 int i;

 for (i = 1; i <= MAX; i++) {
 pthread_mutex_lock(&mutex);
 while (buffer ==0) pthread_cond_wait(&condc, &mutex);
 buffer = 0;
 ptread_cond_signal(&condp); /* wakeup producer */
 pthread_mutex_unlock(&mutex);
 }
 pthread_exit(0);
}

Clearly missing a few
definitions, including
main

13

Problems with semaphores & mutex

! Solves most synchronization problems, but:
–  Semaphores are essentially shared global variables

•  Can be accessed from anywhere (bad software engineering)
–  No connection bet/ the semaphore & the data controlled by it
–  Used for both critical sections & for coordination (scheduling)
–  No control over their use, no guarantee of proper usage

// producer
while (TRUE){
 item = produce_item();

 down(empty);
 down(mutex);
 insert_item(item);
 up(mutex);
 up(full);
}

// producer
while (TRUE){
 item = produce_item();

 down(mutex);
 down(empty);
 insert_item(item);
 up(mutex);
 up(full);
}

What happens if
the buffer is full?

“Minor” change?

 Operations (procedures)

14

Monitors

! Monitors - higher level synchronization primitive
–  A programming language construct

•  Collection of procedures, variables and data structures
–  Monitor’s internal data structures are private

! Monitors and mutual exclusion
–  Only one process active at a time - how?
–  Synchronization code is added by the compiler

Shared data

At most one thread in the
monitor at any given time

Queue of threads waiting
to get into the monitor

x

Condition
variable

15

Monitors

! Once inside a monitor, a thread may discover it can’t
continue, and
–  wants to wait, or
–  inform another one that some condition has been satisfied

! To enforce sequences of events – Condition variables
–  Can only be accessed from within the monitor
–  Two operations – wait & signal
–  A thread that waits “steps outside” the monitor (to a wait

queue associated with that condition variable)
–  What happen after the signal?

•  Hoare – process awakened run, the other one is suspended
•  Brinch Hansen – process doing the signal must exit the monitor
•  Third option? Process doing the signal continues to run (Mesa)

–  Wait is not a counter – signal may get lost

Monitors in Java

! Not truly a monitor
–  Every object contains a lock
–  The synchronized keyword locks that lock
–  Can be applied to methods or blocks of statements

! Synchronized method
– e.g. atomic integer

! Synchronized statements

–  You can lock any object,
and have the lock released
when you leave the block
of statements

16

void foo (ArrayList list) {
 …
 synchronized(list) {
 // manipulate list now
 }
…
}

public class atomicInt {
 int value;
 …
 public synchronized postIncrement() {
 return value++;
 }
…

Message passing

! IPC in distributed systems
! Message passing

send(dest, &msg)

recv(src, &msg)

! Design issues
–  Lost messages: acks
–  Duplicates: sequence #s
–  Naming processes
–  Performance
–  …

17

18

Producer-consumer with message passing
#define N 100 /* num. of slots in buffer */

void producer(void)
{
 int item; message m;

 while(TRUE) {
 item = produce_item();
 receive(consumer, &m);
 build_message(&m, item);
 send(consumer, &m);
 }
}

void consumer(void)
{
 int item, i; message m;

 for(i = 0; i < N; i++)

 send(producer, &m);

 while(TRUE) {
 receive(producer, &m);
 item = extract_item(&m);
 send(producer, &m);
 consume_item(item);
 }
}

19

Barriers

! To synchronize groups of processes
! Type of applications

–  Execution divided in phases
–  Process cannot go into new phase until all can

! e.g. Temperature propagation in a material

Time

B
ar

rie
r

A

B

C

D
B

ar
rie

r

A

B

C

D

B
ar

rie
r

A

B

C

D

Processes

20

Join

! Sometimes you want to wait until a thread has
terminated – join()

! A common use:
–  Start N threads
–  Sit in a loop waiting for all threads …

•  It really doesn't matter much which one finishes first, you just
wait in an arbitrary order

! Similar but not the same as a barrier
–  join() waits until threads have terminated, and so given up all

their resources
–  A barrier is achieved before threads have terminated

21

Dining philosophers problem

! Philosophers eat/think
! To eat, a philosopher needs 2 chopsticks
! Picks one at a time
! How to prevent deadlock

#define N 5

void philosopher(int i)
{
 while (TRUE) {
 think();
 take_chopstick(i);
 take_chopstick((i+1)%N);
 eat();
 put_chopstick(i);
 put_chopstick((i+1)%N);
 }
}

Nonsolution

Why not just
protect all this
with a mutex?

Now: Everybody takes
the left chopstick!

22

Dining philosophers example
void philosopher(int i)
{
 while(TRUE) {
 think();
 take_chopstick(i);
 eat();
 put_chopstick(i);
 }
}

void test(int i)
{
 if ((state[i] == hungry &&

 state[LEFT] != eating &&
 state[RIGHT] != eating) {
 state[i] = EATING;
 up(&s[i]);
 }
}

state[] – too keep track of philosopher’s
 state (eating, thinking, hungry)

s[] – array of semaphores, one per philosopher

void take_chopstick(int i)
{
 down(&mutex);
 state[i] = HUNGRY;
 test(i);
 up(&mutex);
 down(&s[i]);
}

void put_chopstick(int i)
{
 down(&mutex);

 state[i] = THINKING;
 test(LEFT);
 test(RIGHT);
 up(&mutex);
}

23

Dining philosophers with monitors
void philosopher(int i)
{
 while(TRUE) {
 dp.take_chopstick(i);
 eat();
 dp.put_chopstick(i);
 }
}

 void test(int i)
 {
 if ((state[i] == HUNGRY &&

 state[LEFT] != EATING &&
 state[RIGHT] != EATING) {
 state[i] = EATING;
 s[i].signal();
 }
 }

 void setup()

 {
 for (i = 0; i < 5; i++)
 state[i] = THINKING;
 }
} /* end Monitor dp */

Monitor dp
{
 enum {EATING, HUNGRY, EATING}

state[5];
 condition s[5];

 void take_chopstick(int i)
 {
 state[i] = HUNGRY;
 test(i);
 if (state[i] != EATING)
 s[i].wait();
 }

 void put_chopstick(int i)
 {
 state[i] = THINKING;

 test(LEFT); test(RIGHT);
 }

24

Coming up

! Deadlocks

How deadlock arise and what you can do about them

25

The sleeping barber problem

One barber, one barber chair and n chairs
for waiting customers …

No customers,
take a nap.

Arriving
customer wakes
up the barber.

Additional customers
arriving while barber’s
busy – either wait or

leave.

26

The sleeping barber problem

#define CHAIRS 5

void barber (void)
{
 while (TRUE) {
 …
 …
 /* sleep if no customers */
 --waiting;
 …
 …
 cut_hair();
 }
}

void customer (void)
{
 …
 if (waiting < CHAIRS) {
 ++waiting; /* sit down */
 …

 …
 …

 get_haircut();
 } else { /* go elsewhere */
 …
 }

}

Semaphores:
 - Customer - count waiting customers (excluding the
 one in the barber chair)
 - Barbers – number of barbers who are idle
 - mutex – for mutual exclusion

27

The sleeping barber problem

#define CHAIRS 5

void barber (void)
{
 while (TRUE) {
 down(&customers);
 /* sleep if no customers */
 down(&mutex);
 --waiting;
 up(&barbers);
 up(&mutex);
 cut_hair();
 }
}

void customer (void)
{
 …
 if (waiting < CHAIRS) {
 ++waiting; /* sit down */
 …

 …
 …

 get_haircut();
 } else { /* go elsewhere */
 …
 }

}

Semaphores:
 - Customer - count waiting customers (excluding the
 one in the barber chair)
 - Barbers – number of barbers who are idle
 - mutex – for mutual exclusion

28

The sleeping barber problem

#define CHAIRS 5

void barber (void)
{
 while (TRUE) {
 down(&customers);
 /* sleep if no customers */
 down(&mutex);
 --waiting;
 up(&barbers);
 up(&mutex);
 cut_hair();
 }
}

void customer (void)
{
 down(&mutex);
 if (waiting < CHAIRS) {
 ++waiting; /* sit down */
 up(&customers);

 up(&mutex);
 down(&barbers);

 get_haircut();
 } else { /* go elsewhere */
 up(&mutex);
 }

}

Semaphores:
 - Customer - count waiting customers (excluding the
 one in the barber chair)
 - Barbers – number of barbers who are idle
 - mutex – for mutual exclusion

