OS Concepts and structure

Today

® 0OS services

® OS interface to programmers/users
® OS components & interconnects

® Structuring OSs

Next time

® Processes




OS Views

» Vantage points

— OS as the services it provides
* To users and applications

— OS as its components and interactions

» OS provides a number of services
— To users via a command interpreter/shell or GUI
— To application programs via system calls

— Some services are for convenience

» Program execution, 1/O operation, file system
management, communication

— Some to ensure efficient operation
» Resource allocation, accounting, protection and security




Command interpreter (shell) & GUI

» Command interpreter
— Handle (interpret and execute) user commands
— Could be part of the OS: MS DOS, Apple Il
— Could be just a special program: UNIX, Windows XP
* In this way, multiple options — shells — are possible

— The command interpreter could
* Implement all commands
« Simply understand what program to invoke and how (UNIX)

* GUI

— Friendlier, through a desktop metaphor, if sometimes limiting
— Xerox PARK Alto >> Apple >> Windows >> Linux




System calls

» Low-level interface to services for applications

» Higher-level requests get translated into sequence of
system calls

* Writing cp — copy source to destination
— Get file names
— Open source
— Create destination
— Loop
* Read from source
» Copy to destination
— Close destination
— Report completion
— Terminate




System calls

* The steps in making a read system call
read (fd, buffer,

Address
OxFFFFFFFF

nbytes) ;

Then call the library procedure,
which places the syscall number
in a register, an executes a TRAP

Return to caller

Trap to the kernel

Put code for read in register

Before calling the syscall,
push parameters onto the stack

Nl

Kernel space
(Operating system)

or

I

Library
procedure

read

) Before returning to
the user program as
a procedure call

User program
calling read

10,
4
Increment SP 11 "
~ Call read
3| Push fd
2| Push &buffer
1| Push nbytes
6
. 7 8 | Syscall
Dispatch > shdlar

Kernel runs the right
sys call handler




Major OS components & abstractions

» Processes

» Memory

e |/O

» Secondary storage
» File systems

» Protection

» Accounting

» Shells & GUI

» Networking




Processes

» A program in execution
— Address space
— Set of registers

* To get a better sense of it
— What data do you need to (re-) start a suspended process?
— Where do you keep this data?

— What is the process abstraction I/F offered by the OS
» Create, delete, suspend, resume & clone a process
* Inter-process communication & synchronization
» Create/delete a child process

Call Description

pid = fork() Create a child process identical to the parent
pid = waitpid(pid, &statloc, options) Wait for a child to terminate

s = execve(name, argv, environp) Replace a process’ core image

exit(status) Terminate process execution & return status




Memory management

» Main memory — the directly accessed storage for CPU
— Programs must be stored in memory to execute
— Memory access is fast (e.g., 60 ns to load/store)
* but memory doesn’t survive power failures

* OS must

— Allocate memory space for programs (explicitly and implicitly)
— Deallocate space when needed by rest of system

— Maintain mappings from physical to virtual memory
« e.g. through page tables

— Decide how much memory to allocate to each process
— Decide when to remove a process from memory

Call Description

void *sbrk(intptr_t increment) Increments program data space by ‘increment’ bytes




I/0

» A big chunk of the OS kernel deals with I/O

— Hundreds of thousands of lines in NT

* The OS provides a standard interface between
programs & devices
— file system (disk), sockets (network), frame buffer (video)

» Device drivers are the routines that interact with
specific device types
— Encapsulates device-specific knowledge
* e.g., how to initialize a device, request I/O, handle errors

— Examples: SCSI device drivers, Ethernet card drivers, video
card drivers, sound card drivers, ...




Secondary storage

» Secondary storage (disk, tape) is persistent memory
— Often magnetic media, survives power failures (hopefully)

* Routines that interact with disks are typically at a very
low level in the OS
— Used by many components (file system, VM, ...}
— Handle scheduling of disk operations, head movement, error
handling, and often management of space on disks
» Usually independent of file system
— Although there may be cooperation

— File system knowledge of device details can help optimize
performance

* e.g., place related files close together on disk




File systems

» Secondary storage devices are hard to work with

» File system offers a convenient abstraction
— Defines logical abstractions/objects like files & directories
— As well as operations on these objects

» A file is the basic unit of long-term storage

» A directory is just a special kind of file
— ... containing names of other files & metadata

» Interface:
— File/directory creation/deletion, manipulation, copy, lock

» Other higher level services: accounting & quotas,
backup, indexing or search, versioning




Some I/O related system calls

Call

Description

open(s, flags)

Open a file with mode specified in flags

read(fd, buf, n)

Read n bytes from an open file into buf

write(fd,buf,n)

Write n bytes from an open file into fd

close(fd) Release fd

dup(fd) Duplicate fd

pipe(p) Create a pipe and return fd’s in p
chdir(s) Change directory to directory s
mkdir(s) Create a new directory s

mknod(s, major, minor) Create a device file

fstat(fd) Return info about an open file

link(s1, s2) Create another name (s2) for the file s1

unlink(s)

Remove a name




Protection

» Protection is a general mechanism used throughout
the OS

— All resources needed to be protected
* memory
* processes
 files
» devices

» Protection mechanisms help to detect and contain
errors, as well as preventing malicious destruction




OS structure

* OS made of number of components
— Process & memory management, file system, ...

— and system programs
* e.g., bootstrap code, the init program, ...

» Major design issue
— How do we organize all this?
— What are the modules, and where do they exist?
— How do they interact?

» Massive software engineering

— Design a large, complex program that:
« performs well, is reliable, is extensible, is backwards compatible,




OS design & implementation

» User goals and System goals
— User — convenient to use, easy to learn, reliable, safe, fast
— System — easy to design, implement, & maintain, also flexible,
reliable, error-free & efficient
» Affected by choice of hardware, type of system
» Clearly conflicting goals, no unique solution

» Some other issues complicating this
— Size: Windows XP ~40G SLOC, RH 7.1 17G SLOC
— Concurrency — multiple users and multiple devices
— Potentially hostile users, but some users want to collaborate
— Long expected lives & no clear ideas on future needs
— Portability and support to thousands of device drivers
— Backward compatibility




OS design & implementation

» A software engineering principle — separate policy &
mechanism
— Policy: What will be done?
— Mechanism: How to do it?
— Why do you care? Max flexibility, easier to change policies

» Implementation on high-level language

— Early on — assembly (e.g. MS-DOS — 8088), later Algol
(MCP), PL/1 (MULTICS), C (Unix, ...)

— Advantages — faster to write, more compact, easier to
maintain & debug, easier to port

— Cost — Size, speed?, but who cares?!

Early versions ... were written in assembly language, but during the summer of

1973, it was rewritten in C. The size of the new system is about one third greater
than the old. ... much easier to understand and to modify but also includes many
functional improvements ... we considered this increase in size quite acceptable.

D. Ritchie and K. Thompson, The UNIX time-sharing system, CACM 17(7),1974




Monolithic design

* Major advantage:

— Cost of module
interactions is low
(procedure call)

» Disadvantages:
— Hard to understand
— Hard to modify
— Unreliable (no isolation between system modules)
— Hard to maintain

* Alternative?

— How to organize the OS in order to simplify its design and
implementation?

Service
procedures

Utility
procedures




Layering

» The traditional approach
— Implement OS as a set of layers
— Each layer shows an enhanced ‘virtual mach’ to layer above

» Each layer can be tested and verified independently

Layer Description

5: Job managers Execute users’ programs

4: Device managers Handle device & provide buffering

3: Console manager | Implements virtual consoles

2: Page manager Implements virtual memory for each process
1: Kernel Implements a virtual processor for each process
0: Hardware

Dijkstra’s THE system




Problems with layering

» Imposes hierarchical structure
— but real systems have complex interactions
— Strict layering isn’t flexible enough

» Poor performance
— Each layer crossing implies overhead

» Disjunction between model and reality
— Systems modelled as layers, but not built that way




Microkernels

» Popularin the late 80’s, early 90’s

- Re Ce nt reS U rg e n Ce Client Client Process | Terminal . File Memory U d
process process server | server server server Ser moce
® Goal \ Microkernel \ / } Kernel mode
- Mlnlmlze What goeS Client obtains
. service by
sending messages
I n ke rn el to servgr procegses

— Organize rest of OS as user-level processes

* This results in
— Better reliability (isolation between components)
— Ease of extension and customization
— Poor performance (user/kernel boundary crossings)

» First microkernel system was Hydra (CMU, 1970)

— ... Mach (CMU), Chorus (French UNIX-like OS), OS X
(Apple), in some ways NT (Microsoft), L4 (Karlsruhe), ...




Virtual machines

« Initial release of OS/360 were strictly batch but users
wanted timesharing

— IBM CP/CMS, later renamed VM/370 ('79)
» Note that timesharing systems provides
(1) multiprogramming & (2) extended (virtual) machine

» Essence of VM/370 — separate the two

— Heart of the system (VMM) does multiprogramming &
provides to next layer up multiple exact copies of bare HW

— Each VM can run any OS
» Nowadays — Java VM, VMWare

2 System call here

CMSI ql Trap here

I/O instruction here |\

Trap here

370 Bare hardware




Exokernels

» OS, typically securely multiplexes & abstract physical
resources

» But no OS abstractions fits all!

» Exokernel
— A minimal OS securely multiplexes resources
— Library OSes implement higher-level abstractions

Secure binding — a protection
mechanism that decouples
authorization (done at binding)
from use of a resource

operating
systems

Exokernel ‘%Secure*indings&

Hardware | Frame buffer TLB NetWork Memory Disk




Summary & preview

» Today
— The mess under the carpet
— Basic concepts in OS
— OS design has been an evolutionary process
— Structuring OS - a few alternatives, not a clear winner

» Next ...

— Process — the central concept in OS
* Process model and implementation
 What it is, what it does and how it does it




System boot

How does the OS gets started?
» Booting: starting a computer by loading the kernel

» Instruction register loaded with predefined memory
location — bootstrap loader (ROM)
— Why not just put the OS in ROM? Cell phones & PDAs

» Bootstrap loader
— Run diagnostics
— Initialize registers & controllers
— Fetch second bootstrap program form disk
« Why do you need a second bootstrap loader?
» Second bootstrap program loads OS & gets it going
— A disk with a boot partition — boot/system disk




System calls

File management

Call

Description

fd = open(file, how, ...)

Open a file for reading, writing or both.

s = close(fd)

Close an open file

n = read(fd, buffer, nbytes)

Read data from a file into a buffer

n = write(fd, buffer, nbytes)

Write data from a buffer into a file

pos = Iseek(fd, offest, whence)

Move the file pointer

s = stat(name,&buf)

Get a file’s status info

Directory & file system management

Call

Description

s = mkdir(name, mode)

Create a new directory

s = rmdir(hame)

Remove an empty directory

s = link(name1, name2)

Create a new entry, name2, pointing to name1

s = unlink(name)

Remove a directory entry

s = mount(special, name, flag)

Mount a file system

s = unmount(special)

Unmount a file system




Operating system generation

* OS design for a class of machines; need to configure it
for yours - SYSGEN

* SYSGEN program gets info on specific configuration
— CPU(s), memory, devices, other parameters
« Either asking the user or probing the hardware
* Once you got it you could
— Modify source code & recompile kernel
— Modify tables and select precompiled modules
— Modify tables but everything is there & selection is at run time
Trading size & generality for ease of modification




