
Today
l  Welcome to OS
l  Administrivia
l  OS overview and history

Next time
l  Architectural support

Introduction

Course overview …

" Everything you need to know
http://www.aqualab.cs.northwestern.edu/classes/eecs-343-f11/

" Course staff
–  Fabián Bustamante
–  Mario Sánchez (TA)

" Overall structure
–  Lectures – read the text before class
–  TA Sessions - Once a week and focused on projects
–  Homework (4+1)‏

•  Part of their role is reading enforcers – textbook + papers
•  First one is posted on the web; due in eight days (Sep. 29)

– …

2

Course overview

" Overall structure
–  …
–  Readings

•  Optional set of papers; look at the outline in the course webpage
•  Basis for extra-credit questions in exams

–  Projects (4)‏
•  First one will be posted next Monday
•  Discuss on Wednesday
•  Due 9 days later (Oct. 4)

–  Exams (2)
•  Final (not cumulative) on first day of final weeks (Dec. 5)

" It’s not that bad!
–  They are really two classes in one: lectures + projects
–  Sometimes they are aligned, sometimes not
–  You will work a lot and you will also learn a lot

3

A computer system - Where's the OS?

" Hardware provides basic computing resources
" Applications define ways in which resources are used

to solve users' problems
" OS controls & coordinates use of hardware by users’

applications
" A few vantage points

–  End user
–  Programmer
–  OS Designer

systems and application programs"

compiler" text editor" DBMS"…"

operating system"

machine language"
microarchitecture"
physical devices"

User 1" …User 1" User 1"

4

What is an operating system?

" Extended machine – top-down/user-view
–  Hiding the messy details, presenting a virtual machine that's

easier to program than the HW

" Resource manager – bottom-up/system-view
–  Everybody gets a fair-share of time/space from a resource

(multiplexing in space/time)‏
–  A control program – to prevent errors & improper use (CP/M?)‏

" A bundle of helpful, commonly used things
" Goals

–  Convenience – make solving user problems easier
–  Efficiency – use hardware in an efficient manner ($$$

machines demand efficient use)‏
–  Easy to modify/evolve

5

What's part of the OS?

" Trickier than you think: file system, device drivers,
shells, window systems, browser, ...

" Everything a vendor ships with your order?

" The one program running at all times, or running in
kernel mode
–  Everything else is either a system program (ships with the

OS) or an application program
–  Can the user change it?

" Why does it matter? In 1998 the US Department of
Justice filed suit against MS claiming its OS was too
big

6

Why having one?

" For applications
–  Programming simplicity

•  High-level abstractions instead of low-level hardware details
•  Abstractions are reusable across many programs

–  Portability (to != machines configurations/architectures)

" For user
–  Safety

•  Program works within its own virtual machine
•  OS protects programs from each other
•  OS fairly multiplexes resources across programs

–  Efficiency (cost and speed)
•  Share one computer across many users
•  Concurrent execution of multiple programs

7

Why study operating systems?

" Tangible reasons
–  Build/modify one - OSs are everywhere
–  Administer and use them well
–  Tune your favorite application performance
–  Great capstone course

" Intangible reasons
–  Curiosity
–  Use/gain knowledge from other areas
–  Challenge of designing large, complex systems

8

Major OS issues

" Structure: how is the OS organized?
" Sharing: how are resources shared?
" Naming: how are resources named?
" Security: how is integrity of the OS and its resources

ensured?
" Protection: how is one user/program protected from

another?
" Performance: how do we make it all go fast?
" Reliability: what happens if something goes wrong?
" Extensibility: can we add new features?
" Communication: how do programs exchange

information, including across a network?

9

Other OS issues

" Concurrency: how are parallel activities created and
controlled?

" Scale and growth: what happens as demands or
resources increase?

" Persistence: how do you make data last longer than
program executions?

" Distribution: how do multiple computers interact with
each other? how do we make distribution invisible?

" Accounting: how do we keep track of resource usage,
and perhaps charge for it?

There are a huge number of engineering tradeoffs in

dealing with these issues!

10

The evolution of operating systems

" A brief history & a framework to introduce OS
principles

" Early attempts – Babbage's (1702-1871)
–  Analytical Engine (Ada Lovelace –

World's first programmer)

" 1945-55 – Vacuum tubes and plugboards
–  ABC, MARK 1, ENIAC
–  No programming

languages, no OS
–  A big problem

•  Scheduling –
signup sheet
on the wall

11

Evolution ... Batch systems (1955)‏

" Transistors → machs. reliable enough to sell
–  Separation of builders & programmers

" Getting your program to run
–  Write it in paper (maybe in FORTRAN)
–  Punch it on cards & drop cards in input room
–  Operator may have to mount/dismount tapes, setting up card

decks, ... setup time!

" Batch systems
–  Collect a tray of full jobs, read them all into tape with a cheap

computer
–  Bring them to the main computer where the “OS” will go over

each jobs one at a time
–  Print output offline

12
A. Tanenbaum, Modern Operating Systems, 3Ed, Pearson PH, 2008

Evolution ... Spooling (1965)‏

" Disks much faster than card readers
& printers

" Spool (Simultaneous Peripheral Operations On-Line)‏
–  While one job is executing, spool next one from card reader

onto disk
•  Slow card reader I/O overlapped with CPU

–  Can even spool multiple programs onto disk
•  OS must choose which one to run next (job sched)

–  But CPU still idle when program interact with a peripheral
during execution

13

Disk

Cards
Printer

CPU

Evolution ... Multiprogramming (1965)‏

" To increase system utilization
–  Keeps multiple runnable jobs loaded in memory at once
–  Overlap I/O of a job with computing of another
–  Needs asynchronous I/O devices

•  Some way to know when devices are done
–  Interrupt or polling

–  Goal- optimize system throughput
–  Maybe at the cost of response time

" IBM OS/360 & the tar pit

14

Evolution ... Timesharing (1961)‏

" To support interactive use
–  Multiple terminals into one machine
–  Each user given the illusion of owing the entire machine
–  Optimize response time maybe at the cost of throughput

" Time-slicing
–  Dividing CPU equally among users
–  If jobs are truly interactive, CPU can jump between them

without users noticing it
–  Recovers interactivity for the user (why do you care?)

" CTSS (Compatible Time Sharing System), MULTICS
(second-system effect) and UNIX

15

Evolution … Parallel systems (1962)

" Some applications can be written as multiple tasks
–  Speed up when running on several CPUs
–  Need OS and language primitives for dividing/organizing the

multiple tasks
–  Need OS primitives for fast communication between tasks

•  Degree of speedup dictated by communication/computation ratio
–  Many flavors of parallel computers today

•  SMPs (symmetric multi-processors, multi-core)
•  SMT (simultaneous multithreading [“hyperthreading”]
•  MPPs (massively parallel processors)
•  NOWs (networks of workstations) [clusters]
•  Computational grid (SETI @home)

16

Evolution ... PCs (197x)‏

" Large-scale integration >> small & cheap machines
" 1974 – Intel's 8080 & Gary Kildall's CP/M
" Early 1980s – IBM PC, BASIC, CP/M & MS-DOS
" User interfaces, XEROX Altos, MACs and Windows

IBM PC circa 1981

Xe
ro

x
A

lto
 1

97
3

17

Evolution ... Distributed and pervasive

" Facilitate use of geographically distributed resources
–  Workstations on a LAN or across the Internet

" Support communication between programs
" Speed up is not always the issue, but access to

resources (including information)
" Architectures

–  Client/servers
•  Mail server, print server, web server

–  Peer-to-peer
•  (Most) everybody is both, server and client

18

Evolution … Embedded and pervasive

" Pervasive computing
–  Cheap processors embedded everywhere
–  How many are on your body now? in your car?
–  Cell phones, PDAs, games, iPod, network computers, …

" Typically very constrained hardware resources
–  Slow processors
–  Small amount of memory
–  No disk or tiny disk
–  Typically only one dedicated application
–  Limited power

" But technology changes fast

19

“Ontogeny recapitulates phylogeny”*

The development of an embryo repeats the
evolution of the species (* Ernst Haeckel) ‏

But new problems arise
and others redefine
themselves

20

21

Summary

" In this class you will learn
–  Major components of an OS
–  How are they structured
–  The most important interfaces
–  Policies typically used in an OS
–  Algorithms used to implement those policies

" Philosophy
–  You many not ever build an OS, but
–  As a CS/CE you need to understand the foundations
–  Most importantly, OSs exemplify the sorts of engineering tradeoffs

you'll need to make throughout your careers

