
Synchronization

Today
Race condition & critical regions

Mutual exclusion with busy waiting

Sleep and wakeup

Next time
Semaphores and Monitors

2

Cooperating processes

Cooperating processes need to communicate

– They can affect/be affected by others

Issues

– 1. How to pass information to another process?

– 2. How to avoid getting in each other’s ways?

• Two processes trying to get the last seat on a plane

– 3. How to ensure proper sequencing when there are

dependencies?

• Process A produces data, while B prints it – B must wait for A before

starting to print

How about threads?

– 1. Easy

– 2 & 3. Pretty much the same

EECS 343 Operating Systems

Northwestern University

Many times cooperating process share memory

A common example – print spooler

– A process wants to print a file, enter file name in a special

spooler directory

– Printer daemon, another process, periodically checks the

directory, prints whatever file is there and removes the name

next_slot:= in; // in = 4

spooler_dir[next_slot] := file_name; // insert “abc”

in++;

3

Accessing shared resources

EECS 343 Operating Systems

Northwestern University

Spooler

directory

4

5

6

7

8

zzz3

In: 3

Out: 3

In: 4

Out: 3
abc

A: next_slotA ← in % 7

A: spooler_dir[next_slotA] ←file_nameA

A: in ←next_slotA + 1 % 8

B: next_slotB ← in % 8

B: spooler_dir[next_slotB] ←file_nameB

B: in ←next_slotB + 1 % 9

Switch

4

Accessing shared resources

Assumption – preemptive scheduling

Two processes, A & B, trying to print

EECS 343 Operating Systems

Northwestern University

Process A

Process B

In: 7

Out: 3

Spooler

directory

abc

fileA

taxes

4

5

6

7

8

A: next_slotA ← in % 7

A: spooler_dir[next_slotA] ←file_nameA

A: in ←next_slotA + 1 % 8

B: next_slotB ← in % 8

B: spooler_dir[next_slotB] ←file_nameB

B: in ←next_slotB + 1 % 9

Switch

5

Interleaved schedules

Problem – the execution of the two threads/processes

can be interleaved

– Some times the result of interleaving is OK, others not!

A: next_slotA ← in % 7

B: next_slotB ← in % 7

B: spooler_dir[next_slotB] ←file_nameB

B: in ←next_slotB + 1 % 8

A: spooler_dir[next_slotA] ←file_nameA

A: in ←next_slotA + 1 % 8

Switch

Switch

EECS 343 Operating Systems

Northwestern University

Process A

Process B

In: 7

Out: 3

Spooler

directory

abc

fileA

taxes

4

5

6

7

8

In: 8

6

Interleaved schedule – another example

EECS 343 Operating Systems

Northwestern University

1 struct list {

2 int data;

3 struct list *next;

4 };

5

6 struct list *list = 0;

7

8 void

9 insert(int data)

10 {

11 struct list *l;

12

13 l = malloc(sizeof *l);

14 l->data = data;

15 l->next = list;

16 list = l;

17 }

Two processes, what would

happen if one executing line 15

before the other executes 16?

list

next

l

list

nextl

list

7

Race conditions and critical regions

Problem – the process operating on the data assumes

certain conditions (invariants) hold

– For the linked list – list points to the head of the list and

each element’s next point to the next element

– Insert temporarily violates this, but fixes it before finishing

– True for a single process, not for two concurrent ones

Race condition

– Two or more threads/processes access (r/w) shared data

– Final results depends on order of execution

Code where race condition is possible – critical region

EECS 343 Operating Systems

Northwestern University

8

Race conditions and critical regions

We need mechanisms to prevent race conditions,

synchronizing access to shared resources

– Some tools try to detect them – helgrind

We need a way to ensure the invariant conditions hold

when the process is going to manipulate the share

item, i.e. …

… to ensure that if a process is using a shared item,

other processes will be excluded from doing it

– i.e. only one thread at a time in the critical region (CR)

Mutual exclusion

EECS 343 Operating Systems

Northwestern University

9

Requirements for a solution

No two processes simultaneously in CR

– Mutual exclusion, at most one thread in

No assumptions on speeds or numbers of CPUs

No process outside its CR can block another one

– Ensure progress; a thread outside the CR cannot prevent

another one from entering

No process should wait forever to enter its CR

– Bounded waiting or no starvation

– Threads waiting to enter a CR should eventually be allow to

enter

EECS 343 Operating Systems

Northwestern University

10

How about …?

Lock variable

– Lock initially 0

– Process checks lock when entering CR

– Problem? Same as before!

• Both can concurrently test 17, see it unlocked, and grab it; now both are

in the CR

EECS 343 Operating Systems

Northwestern University

1 void

2 insert(int data)

3 {

4 struct list *l;

5

6 acquire(lock);

7 l = malloc(sizeof *l);

8 l->data = data;

9 l->next = list;

10 list = l;

11 }

12

13 void

14 acquire(lock *lk)

15 {

16 for(;;) {

17 if(!lk->locked) {

18 lk->locked = 1;

19 break;

20 }

21

22 }

23 }

11

How about …?

Disabling interrupts

– Simplest solution – process disables all interrupts when

entering the CR and re-enables them at exit

– No interrupts → no clock interrupts → no other process

getting in your way

– Problems?

• Users in control – grabs the CPU and never comes back

• Multiprocessors?

– Use in the kernel – still multicore means we need something

more sophisticated

EECS 343 Operating Systems

Northwestern University

12

Strict alternation

Taking turns

– turn keeps track of whose turn it is to enter the CR

Problems?

– What if process 0 sets turn to 1, but it gets around to just

before its critical region before process 1 even tries?

– Violates conditions 3

Process 0 Process 1

while(TRUE) {

while(turn != 0);

critical_region0();

turn = 1;

noncritical_region0();

}

while(TRUE) {

while(turn != 1);

critical_region1();

turn = 0;

noncritical_region1();

}

EECS 343 Operating Systems

Northwestern University

13

Peterson’s solution

#define FALSE 0

#define TRUE 1

#define N 2 /* num. of processes */

int turn;
int interested[N];

void enter_region(int process)

{

int other;

other = 1 – process;

interested[process] = TRUE;

turn = other;

while (interested[other] == TRUE &&

turn == other);

}

void leave_region(int process)

{

interested[process] = FALSE;

}

EECS 343 Operating Systems

Northwestern University

Template of a process’
access to the critical region
(process 0):

…

enter_region(0);

<CR>

leave_region(0);

…

Combining locks and turns …

Peterson’s solution

EECS 343 Operating Systems

Northwestern University 14

You can show all conditions hold

– Mutual exclusion

– P1 can only entered if P2 is not interested or turn is 1

– If both processes are in their CR, then both have to be

interested

– But they could not have both exited their while statement since

turn is either 0 or 1

– Whoever did not go in, say P1, have to wait for the other, P2, to

set its interested to false

interested[process] = TRUE;

turn = other;

while (interested[other] == TRUE &&

turn == other);

<CR>

interested[process] = FALSE;

16

TSL(test&set) -based solution

With a little help from hardware – TSL instruction

Atomically test & modify the content of a word

TSL REG, LOCK

– REG ← LOCK >> Read the content of variable LOCK into register REG

– LOCK ← non-zero value >> Set lock to a non-zero value

Entering and leaving CR

Continuously testing a variable for a given value is
called busy waiting; a lock that uses this is a spin lock

enter_region:

TSL REGISTER, LOCK

CMP REGISTER, #0

JNE enter_region | non zero, lock set

RET | return to caller, you’re in

leave_region:

MOVE LOCK, #0

RET

EECS 343 Operating Systems

Northwestern University

Busy waiting

Synchronization in xv6

Xv6 uses locks, represented as struct spinlock

EECS 343 Operating Systems

Northwestern University 17

// Mutual exclusion lock.

struct spinlock {

uint locked; // Is the lock held?

// For debugging:

char *name; // Name of lock.

struct cpu *cpu; // The cpu holding the lock.

uint pcs[10]; // The call stack (an array of program counters)

// that locked the lock.

};

void

acquire(struct spinlock *lk)

{

pushcli();

if(holding(lk))

panic("acquire");

// The xchg is atomic.

while(xchg(&lk−>locked, 1) != 0)

;

// Record info about lock acquisition for debugging.

lk−>cpu = cpu;

getcallerpcs(&lk, lk−>pcs);

}

Synchronization in xv6

EECS 343 Operating Systems

Northwestern University 18

void

release(struct spinlock *lk)

{

if(!holding(lk))

panic(“release”);

lk->pcs[0] = 0;

lk->cpu = 0;

xchg(&lk->locked, 0);

popcli();

}

static inline uint

xchg(volatile uint *addr, uint newval)

{

uint result;

// The + in "+m" denotes a read−modify−write operand.

asm volatile("lock; xchgl %0, %1" :

"+m" (*addr), "=a" (result) :

"1" (newval) :

"cc");

return result;

}

What is the difference between
TSL and xchg? Can you

implement one with the other?

19

Busy waiting and priority inversion

Problems with TSL-based approach?

– Waste CPU by busy waiting

– Can lead to priority inversion

• Two processes, H (high-priority) & L (low-priority)

• L gets into its CR

• H is ready to run and starts busy waiting

• L is never scheduled while H is running …

• So L never leaves its critical region and H loops forever!

EECS 343 Operating Systems

Northwestern University

Welcome to Mars!

20

Problems in the Mars Pathfinder*

Mars Pathfinder

– Launched Dec. 4, 1996, landed July 4th, 1997

Periodically the system reset itself, loosing data

VxWork provides preemptive priority scheduling

Pathfinder software architecture

– An information bus with access controlled by a lock

– A bus management (B) high-priority thread

– A meteorological (M) low-priority, short-running thread

• If B thread was scheduled while the M thread was holding

the lock, the B thread busy waited on the lock

– A communication (C) thread running with medium priority

EECS 343 Operating Systems

Northwestern University

*As explained by D. Wilner, CTO of Wind

River Systems, and narrated by Mike Jones

21

Problems in the Mars Pathfinder*

Sometimes,

– B was waiting on M and

– C was scheduled

After a bit of waiting, a watchdog timer would reset the system

How would you fix it?

– Priority inheritance – the M thread inherits the priority of the B

thread blocked on it

– Actually supported by VxWork but dissabled!

EECS 343 Operating Systems

Northwestern University

Information bus

B (high) M (low)

C (medium)

22

Sleep & wakeup

Avoid busy waiting – rather than sit in a tight loop, go

to sleep

An alternative solution

– Sleep – causes the caller to block, i.e. be suspended until

another process wakes it up

– Wakeup – process passed as parameter is awakened

EECS 343 Operating Systems

Northwestern University

Also known as bounded buffer

– Two processes & one shared, fixed-size buffer

– One puts information into the buffer, the other one takes it out

Producer

while (TRUE){

item = produce_item();

while (count == N);

insert_item(item);

++count;

if (count == 1)

wakeup(consumer)

}

Consumer

while (TRUE){

while(count == 0);

item = remove_item();

--count;

if (count == (N -1))

wakeup(producer);

consume_item(item);

}

23

Producer-Consumer problem

EECS 343 Operating Systems

Northwestern University

Consumer

Producer

Producer

while (TRUE){

item = produce_item();

if (count == N) sleep();

insert_item(item);

++count;

if (count == 1)

wakeup(consumer)

}

Consumer

while (TRUE){

if (count == 0) sleep();

item = remove_item();

--count;

if (count == (N -1))

wakeup(producer);

consume_item(item);

}

“Simple solution”

– If buffer is empty, producer goes to sleep to be awaken when

the consumer has removed one or more items

– Similarly for the consumer

Of course, we can still have a race condition!

24

Producer-Consumer problem

EECS 343 Operating Systems

Northwestern University

Producer

while (TRUE){

item = produce_item();

if (count == N) sleep();

insert_item(item);

++count;

if (count == 1)

wakeup(consumer)

}

Consumer

while (TRUE){

if (count == 0) sleep();

item = remove_item();

--count;

if (count == (N -1))

wakeup(producer);

consume_item(item);

}

Possible sequence

– Consumer reads count = 0; scheduler blocks it, runs producer

– Producer inserts item, ++count and signals consumer

– But consumer is not yet sleep, so signal is lost!

– Consumer wakes up, sees count = 0 and goes to sleep … for

ever

A piggy bank of waiting bits? How many?

25

Producer-Consumer problem

EECS 343 Operating Systems

Northwestern University

Consumer is not yet logically

sleep - producer’s signal is lost!

26

Coming up …

Several mechanisms for synchronization

Locks are the lowest and require

– Disabling interrupts or

– Busy waiting

Some other alternatives

– Semaphores – slightly higher abstractions

– Monitors – much better but requiring language support

EECS 343 Operating Systems

Northwestern University

