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Motivation

Wireless sensor networks (WSNs) with
– Resource constrained embedded microcontrollers
– Complex application requirements

OS support is very limited; applications (developers) 
could benefits from
– OS protection
– Virtual memory
– Preemptive scheduling

But microcontrollers don’t have HW support for this
– E.g. privileged execution, virtual address translation, memory 

protection
How can we efficiently provide such support w/o 
hardware help?
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Context – Complex apps requirements

VM - VigilNet – large-scale surveillance
– 30 middleware services & 40K SLC
– Using overlay in absence of VM is not really an answer

• Application specific, inefficient, labor intensive, error-prone

OS Control - Extreme scaling
– To ensure the OS gets the CPU back, grenade timer or 

periodic reboot 
• Coarse control granularity
• Applications must adapt to this
• Long time w/o OS control to reduce too frequent restarts
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Minimum assumptions (REM)
– Reprogrammable – you can write something into mem. & execute it
– External nonvolatile storage
– Some RAM available (4KB)

Load-time code modification – naturalization
– Done on demand, one page at a time
– Output – a cooperative program supporting OS protection, VM 

& preemptive scheduling
Paging
– Storage management

Dispatcher
– Controls execution
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Approach - Naturalization
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Naturalization and control

CPU control – the OS can get the CPU to execute
– Traditionally supported by privilege support & clock interrupts

t-kernel – modify all branching instructions
– Save registers, save destination and go to homeGate 

(welcomeHome)
– welcomeHome – routine in the dispatcher; retrieve destination, 

seeks for a natin page (or create one) and transfer control to it
– Transferring control flow to entry point – go to natin page and 

go through cascading branch chain
• Just like that – too slow!

– For branching instructions that are application-kernel 
transitions

• One of every 256 backward branches calls the kernel’s santy check 
routing

• The rest goes almost unmodified
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Three-level look up for a VPC

Each VPM is hashed to a number of natin pages; need 
to check all entry points to decide
1. VPC look-aside buffer (fast)
2. Two-associative 
VPC table
3. Brute-force 
search on the natin 
pages (slow)
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Differentiated VM – three memory areas

Physical address sensitive memory (PASM)
– Virtual/physical addresses are the same
– The fastest access

Stack memory
– Virtual/physical addresses directly mapped
– Fast access with boundary checks

Heap memory
– May involve a transition to kernel
– The slowest, sometimes involves swapping
– For kernel data integrity – the kernel has its own heap

A challenge with flash
– After 10k writes, a flash page cannot longer be used
– If swap-outs evenly distributed to all pages, maximum lifetime
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Implementation

Hardware 
paramenters

Data RAM
External flash
Program mem

4KB
512KB
128KB

OS Parameters Virtual mem.
Data frame
Look-aside buffer
2-associative VPC
System stack
I/O Buffer

64KB
64 frames
64 entries
256 entries
1KB
516 bytes

Implementation 
details

Code size (source)
Code (binary)

10 KLSC
29KB

MICA2 
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Kernel space
0x16200-0x1FFFF

Natin space
0x200-0x161FF

Interrupt handlers
0x0-0x1FF

128K Physical  
program memory
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Overhead of naturalization

Kernel transition time
– ~20 cycles for backward branches, rare
– 4 cycles for the most common forward branch

Kernel transition
– Saves/restore registers / checks the stack pointers / 

Increments system counters
– May need to 

• Look for destination address / Trigger naturalization of a new 
page / Re-link naturalized page

Overhead of VM
– Slowest stack access: 16 cycles
– Heap access w/o swapping: 15 cycles
– Heap access w/ swapping: 25.8ms (180,857 cycles)
– .. But swap out time – 25.73ms (near hardware’s limit)
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Overhead from the app’s perspective

Performance differs noticeably among applications
– Different branch density
– Different frequency of heap access

For CPU-bound tasks – relative execution time 1.5-3
But most WSN apps have low CPU utilization

EECS 343 Operating Systems
Northwestern University



11

Overhead from the app’s perspective

PeriodicTask
– Wake-up/poll-sensors/communicate 
– Varying the amount of computation in each task
– Keep in mind the CPU idle ratio of TinyOS apps

• μ - CPU utilization
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Comparison to VM approach

Comparing with Maté, a VM for TinyOS
– A stack based virtual architecture 
– Comparison with an insertion-sorting program
– Initial cost of t-kernel comes from naturalization

• After 100 grows slowly; naturalization has a one-time overhead
– In contrast, bytecode translation has to be done every time

• And sophisticated optimizations for VMs cannot save you here

Of course, you could build Maté/TinyOS on top of t-
kernel
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Conclusions & Future Work

Aiming at REM
– Low energy budget, low CPU utilization, but high application 

requirements

Make the common case fast
– Use uncommon branches for control
– Optimize memory mapping based on this

What if power where not an issue?
The overhead of naturalization
killed some applications with 
timing assumptions built in
Trashing will kill you – learn 
about typical locality and 
working set Computer-chip fabrication techniques to 

make a gas-turbine engine that fits in the 
palm of a hand (Epstein, MIT).
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