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Motivation

* Wireless sensor networks (WSNs) with
— Resource constrained embedded microcontrollers
— Complex application requirements
» OS support is very limited; applications (developers)
could benefits from
— OS protection
— Virtual memory
— Preemptive scheduling

But microcontrollers don’'t have HW support for this

— E.g. privileged execution, virtual address translation, memory
protection

» How can we efficiently provide such support w/o
hardware help?
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Context — Complex apps requirements

» VM - VigilNet — large-scale surveillance
— 30 middleware services & 40K SLC

— Using overlay in absence of VM is not really an answer
» Application specific, inefficient, labor intensive, error-prone

« OS Control - Extreme scaling

— To ensure the OS gets the CPU back, grenade timer or
periodic reboot
» Coarse control granularity
» Applications must adapt to this
* Long time w/o OS control to reduce too frequent restarts
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Approach - Naturalization

» Minimum assumptions (REM)
— Reprogrammable — you can write something into mem. & execute it

— External nonvolatile storage
— Some RAM available (4KB)

+ | oad-time code modification — naturalization
— Done on demand, one page at a time

— Output — a cooperative program supporting OS protection, VM
& preemptive scheduling

» Paging
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Naturalization and control

» CPU control — the OS can get the CPU to execute
— Traditionally supported by privilege support & clock interrupts

» t-kernel — modify all branching instructions

— Save registers, save destination and go to homeGate
(welcomeHome)

— welcomeHome — routine in the dispatcher; retrieve destination,
seeks for a natin page (or create one) and transfer control to it

— Transferring control flow to entry point — go to natin page and
go through cascading branch chain
« Just like that — too slow!

— For branching instructions that are application-kernel
transitions

* One of every 256 backward branches calls the kernel’s santy check
routing

» The rest goes almost unmodified
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Three-level look up for a VPC

« Each VPM is hashed to a number of natin pages; need
to check all entry points to decide

» 1. VPC look-aside buffer (fast)

» 2. Two-associative 126K ohysical program
vPC memory
VPC table
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Differentiated VM — three memory areas

« Physical address sensitive memory (PASM)
— Virtual/physical addresses are the same
— The fastest access

» Stack memory
— Virtual/physical addresses directly mapped
— Fast access with boundary checks

* Heap memory
— May involve a transition to kernel
— The slowest, sometimes involves swapping
— For kernel data integrity — the kernel has its own heap

* A challenge with flash

— After 10k writes, a flash page cannot longer be used
— If swap-outs evenly distributed to all pages, maximum lifetime
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Implementation

MICAZ2

Hardware Data RAM 4KB
paramenters External flash 512KB
Program mem 128KB
OS Parameters | Virtual mem. 64KB
Data frame 64 frames
Look-aside buffer 64 entries
2-associative VPC 256 entries
System stack 1KB
I/O Buffer 516 bytes
Implementation | Code size (source) 10 KLSC
details Code (binary) 29KB
128K Physical

program memory
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Kernel space
0x16200-0x1FFFF

Natin space
0x200-0x161FF

Interrupt handlers
0x0-0Ox1FF




Overhead of naturalization

» Kernel transition time
— ~20 cycles for backward branches, rare
— 4 cycles for the most common forward branch

« Kernel transition

— Saves/restore registers / checks the stack pointers /
Increments system counters

— May need to

» Look for destination address / Trigger naturalization of a new
page / Re-link naturalized page

* QOverhead of VM

— Slowest stack access: 16 cycles

— Heap access w/o swapping: 15 cycles

— Heap access w/ swapping: 25.8ms (180,857 cycles)
— .. But swap out time — 25.73ms (near hardware’s limit)
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Overhead from the app’s perspective

Relative execution time of kernel benchmark programs

Execution time relative to native
]

am amplitude eventchain  timer readadc crc Ifsr

Program

» Performance differs noticeably among applications
— Different branch density
— Different frequency of heap access

» For CPU-bound tasks — relative execution time 1.5-3
+ But most WSN apps have low CPU utilization
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Overhead from the app’s perspective

» PeriodicTask
— Wake-up/poll-sensors/communicate
— Varying the amount of computation in each task

— Keep in mind the CPU idle ratio of TinyOS apps
* M- CPU utilization
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Comparison to VM approach

« Comparing with Maté, a VM for TinyOS
— A stack based virtual architecture
— Comparison with an insertion-sorting program

— Initial cost of t-kernel comes from naturalization
« After 100 grows slowly; naturalization has a one-time overhead

— In contrast, bytecode translation has to be done every time
» And sophisticated optimizations for VMs cannot save you here

» Of course, you could build Maté/TinyOS on top of t-

kernel

80

g 70 H—=—t-kernel / —
;_3; 60 H—— Mate /

Z 50

E 40 "/-

% 30 /

E 20 —

LE 10 _l/r.{_"/‘:.__-_-__-_ - e e

0

0 100 200 300 400 500 600 700 800 900 1000

Number of lists to be sorted

EECS 343 Operating Systems
Northwestern University




Conclusions & Future Work

Aiming at REM
— Low energy budget, low CPU utilization, but high application
requirements
» Make the common case fast
— Use uncommon branches for control
— Optimize memory mapping based on this

* What if power where not an issue?

» The overhead of naturalization
Killed some applications with
timing assumptions built in

» Trashing will kill you — learn
about typical locality and

WO rkl n g Set Computer-chip fabrication techniques to

make a gas-turbine engine that fits in the
palm of a hand (Epstein, MIT).
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