
Fabián E. Bustamante, Fall 2007

t-kernel – Reliable OS support for WSN

L. Gu and J. Stankovic, appearing in 4th

Proc. of the 4th ACM Conference on
Embedded Networked Sensor Systems,
Oct. 2006.

Best paper award.

EECS 343 Operating Systems
Northwestern University

2

Motivation

Wireless sensor networks (WSNs) with
– Resource constrained embedded microcontrollers
– Complex application requirements

OS support is very limited; applications (developers)
could benefits from
– OS protection
– Virtual memory
– Preemptive scheduling

But microcontrollers don’t have HW support for this
– E.g. privileged execution, virtual address translation, memory

protection
How can we efficiently provide such support w/o
hardware help?

3

Context – Complex apps requirements

VM - VigilNet – large-scale surveillance
– 30 middleware services & 40K SLC
– Using overlay in absence of VM is not really an answer

• Application specific, inefficient, labor intensive, error-prone

OS Control - Extreme scaling
– To ensure the OS gets the CPU back, grenade timer or

periodic reboot
• Coarse control granularity
• Applications must adapt to this
• Long time w/o OS control to reduce too frequent restarts

EECS 343 Operating Systems
Northwestern University

Minimum assumptions (REM)
– Reprogrammable – you can write something into mem. & execute it
– External nonvolatile storage
– Some RAM available (4KB)

Load-time code modification – naturalization
– Done on demand, one page at a time
– Output – a cooperative program supporting OS protection, VM

& preemptive scheduling
Paging
– Storage management

Dispatcher
– Controls execution

4

Approach - Naturalization

EECS 343 Operating Systems
Northwestern University

5

Naturalization and control

CPU control – the OS can get the CPU to execute
– Traditionally supported by privilege support & clock interrupts

t-kernel – modify all branching instructions
– Save registers, save destination and go to homeGate

(welcomeHome)
– welcomeHome – routine in the dispatcher; retrieve destination,

seeks for a natin page (or create one) and transfer control to it
– Transferring control flow to entry point – go to natin page and

go through cascading branch chain
• Just like that – too slow!

– For branching instructions that are application-kernel
transitions

• One of every 256 backward branches calls the kernel’s santy check
routing

• The rest goes almost unmodified

EECS 343 Operating Systems
Northwestern University

6

Three-level look up for a VPC

Each VPM is hashed to a number of natin pages; need
to check all entry points to decide
1. VPC look-aside buffer (fast)
2. Two-associative
VPC table
3. Brute-force
search on the natin
pages (slow)

EECS 343 Operating Systems
Northwestern University

7

Differentiated VM – three memory areas

Physical address sensitive memory (PASM)
– Virtual/physical addresses are the same
– The fastest access

Stack memory
– Virtual/physical addresses directly mapped
– Fast access with boundary checks

Heap memory
– May involve a transition to kernel
– The slowest, sometimes involves swapping
– For kernel data integrity – the kernel has its own heap

A challenge with flash
– After 10k writes, a flash page cannot longer be used
– If swap-outs evenly distributed to all pages, maximum lifetime

EECS 343 Operating Systems
Northwestern University

8

Implementation

Hardware
paramenters

Data RAM
External flash
Program mem

4KB
512KB
128KB

OS Parameters Virtual mem.
Data frame
Look-aside buffer
2-associative VPC
System stack
I/O Buffer

64KB
64 frames
64 entries
256 entries
1KB
516 bytes

Implementation
details

Code size (source)
Code (binary)

10 KLSC
29KB

MICA2

EECS 343 Operating Systems
Northwestern University

Kernel space
0x16200-0x1FFFF

Natin space
0x200-0x161FF

Interrupt handlers
0x0-0x1FF

128K Physical
program memory

9

Overhead of naturalization

Kernel transition time
– ~20 cycles for backward branches, rare
– 4 cycles for the most common forward branch

Kernel transition
– Saves/restore registers / checks the stack pointers /

Increments system counters
– May need to

• Look for destination address / Trigger naturalization of a new
page / Re-link naturalized page

Overhead of VM
– Slowest stack access: 16 cycles
– Heap access w/o swapping: 15 cycles
– Heap access w/ swapping: 25.8ms (180,857 cycles)
– .. But swap out time – 25.73ms (near hardware’s limit)

EECS 343 Operating Systems
Northwestern University

10

Overhead from the app’s perspective

Performance differs noticeably among applications
– Different branch density
– Different frequency of heap access

For CPU-bound tasks – relative execution time 1.5-3
But most WSN apps have low CPU utilization

EECS 343 Operating Systems
Northwestern University

11

Overhead from the app’s perspective

PeriodicTask
– Wake-up/poll-sensors/communicate
– Varying the amount of computation in each task
– Keep in mind the CPU idle ratio of TinyOS apps

• μ - CPU utilization

EECS 343 Operating Systems
Northwestern University

μ = 0.02 μ = 0.34

12

Comparison to VM approach

Comparing with Maté, a VM for TinyOS
– A stack based virtual architecture
– Comparison with an insertion-sorting program
– Initial cost of t-kernel comes from naturalization

• After 100 grows slowly; naturalization has a one-time overhead
– In contrast, bytecode translation has to be done every time

• And sophisticated optimizations for VMs cannot save you here

Of course, you could build Maté/TinyOS on top of t-
kernel

EECS 343 Operating Systems
Northwestern University

13

Conclusions & Future Work

Aiming at REM
– Low energy budget, low CPU utilization, but high application

requirements

Make the common case fast
– Use uncommon branches for control
– Optimize memory mapping based on this

What if power where not an issue?
The overhead of naturalization
killed some applications with
timing assumptions built in
Trashing will kill you – learn
about typical locality and
working set Computer-chip fabrication techniques to

make a gas-turbine engine that fits in the
palm of a hand (Epstein, MIT).

EECS 343 Operating Systems
Northwestern University

	t-kernel – Reliable OS support for WSN
	Motivation
	Context – Complex apps requirements
	Approach - Naturalization
	Naturalization and control
	Three-level look up for a VPC
	Differentiated VM – three memory areas
	Implementation
	Overhead of naturalization
	Overhead from the app’s perspective
	Overhead from the app’s perspective
	Comparison to VM approach
	Conclusions & Future Work

