Distributed Systems

Today

» Definition

» Goals and pitfalls

» Grapevine — an early example

—_— |
—

) 9
N Q ,
'\.. L% N -
4 A
[~ L
_ < J
C i = .g oo
c ”m\
o ‘\\ 7
x * .
)

Fabian E. Bustamante, Fall 2007



What is a distributed systen?

= Very broad definition

— A collection of independent, interconnected processors that
communicate and coordinate their action by exchanging
messages

* Why do you want one?
— Resource sharing — both, physical resources and information

— Computation speedup — to solve large problems, we will need
many cooperating machines

— Reliability — machines falil frequently
— Communication — people collaborating from remote sites

— Many applications are by their nature distributed (ATMs,
airline ticket reservation, etc)

EECS 343 Operating Systems
Northwestern University



Distributed systems challenges

=« Making resources available
— The main goal of DS — making convenient to share resources

* Security
— Sharing, as always, introduces security issues

* Providing transparency
— Hide the fact that the system is distributed

— Types of transparency
» Access — What's data representation?
» Location — Where’s the resource located?
» Migration — Have the resource moved?
» Relocation — Is the resource being move?
* Replication — Are there multiple copies?
« Concurrency — Is there anybody else accessing the resource now?
» Failure — Has it been working all along?

— Do we really want transparency?

EECS 343 Operating Systems
Northwestern University




Distributed systems challenges

Openness
— Services should follow agreed-upon rules on component
syntax & semantics
Scalability

— In numbers (users and resources), geographic span and
administration complexity

— Some useful techniques
« Asynchronous communication
 Distribution
« Caching/replication

Adding to the challenges, common false assumptions
— The network is unreliable / secure / homogenous
— The topology does not change
— Latency is zero / Bandwidth is infinite /Transport cost is zero
— There is one administrator

EECS 343 Operating Systems
Northwestern University




Loosely-coupled systems

= Earliest systems used simple explicit network
programs
— FTP (rcp): file transfer program
— telnet (rlogin/rsh): remote login program
— mail (SMTP)

» Each system was a completely autonomous system,
connected to others on the network

» Even today, most dist. systems are loosely-coupled
— Each CPU runs an independent autonomous OS
— Computers don’t really trust each other
— Some resources are shared, but most are not
— The system may look differently from different hosts
— Typically, communication times are long

EECS 343 Operating Systems
Northwestern University




Closely-coupled systems

= A DS becomes more “closely-coupled” as it
— Appears more uniform in nature
— Runs a “single” operating system
— Has a single security domain
— Shares all logical resources (e.g., files)
— Shares all physical resources (CPUs, memory, disks, printers,
etc.)
» In the limit, a distributed system looks to users as a
centralized timesharing system, but built of a
distributed set of hardwareTand software components

EECS 343 Operating Systems
Northwestern University



Tightly-coupled systems

= A “tightly-coupled” system usually refers to a
multiprocessor
— Runs a single copy of the OS with a single job queue
— Has a single address space

— Usually has a single bus or backplane to which all processors
and memories are connected

— Has very low communication latency
— Processors communicate through shared memory

EECS 343 Operating Systems
Northwestern University



Grapevine

» Grapevine — Xerox PARC 1980

— A loosely-coupled system
— Provides message delivery, resource location, authentication,
and access control
» Design goals
— No assumptions on message content
— Cannot rely on the integrity of clients
— Once the system accepts mail, it will be delivered
— Fault tolerance to single computer failures
— Decentralized administration

Components
— GrapevineUser package on each client workstation

— Registration Servers & Message Servers
— Communication via Remote Procedure Calls

EECS 343 Operating Systems
Northwestern University



Grapevine: Functional diagram

authenticate, membership

Grapevine

Registration

GrapevineUser

Client program

User “p.q”

Workstation 1

AN

Send msg.
to x.y

Server “A”
Registration
Locate _ Server “B”
authenticate authenticate P \
> locate
forward
Message Message
Server “B” Server “C”
N N
locate send retrieve

GrapevineUser

File Server “E”

\

FTP
connection

GrapevineUser

Client program

User “x.y”

EECS 343 Operating Systems
Northwestern University

A2

Workstation 2




Grapevine: Sending a message

User prepares message using mail client

» Maill client contacts GrapevineUser package on same
workstation to send message

» GrapevineUser package

— Contacts any Registration Server to get a list of Message
Servers

— Contacts any Message Server to transmit message
* Presents source and destination userids, and source password,
for authentication
— Message Server uses any Registration Server to authenticate
« Sends message body to Message Server
— Message Server places it in stable storage & acknowledges receipt

EECS 343 Operating Systems
Northwestern University




Grapevine: Transport and buffering

» For each recipient, Message Server contacts any
Registration Server to obtain list of Message Servers
holding mail for that recipient

» Sends copy of the message to one of those Message
Servers for that recipient (preferred site)
— Hints for speeding up mappings

» |f message cannot be deliver to some, reports this
back to sender with an explanation

EECS 343 Operating Systems
Northwestern University



Grapevine: Functional diagram

authenticate, membership

Grapevine

Registration

GrapevineUser

Client program

User “p.q”

Workstation 1

Server “A”
/ Registration
Locate Server “B”
i . N N
authenticate authenticate
> locate
forward
Message Message
Server “B” Server “C”
N N
locate send retrieve

GrapevineUser

File Server “E”

\

FTP
connection

GrapevineUser

Client program

A2

Workstation 2

S—

User “x.y”

Reading email

EECS 343 Operating Systems
Northwestern University




Grapevine: Retrieving mail

» User uses mail client to contact GrapevineUser
package on same workstation to retrieve mail

» GrapevineUser package

— Contacts any Registration Server to get a list of each
Message Server holding mail for the user (“inbox site”)

— Contacts each of these Message Servers to retrieve mail

 Presents user credentials
— Message Server uses any Registration Server to authenticate

» Acknowledges receipt of messages so that the server can delete
them from its storage

EECS 343 Operating Systems
Northwestern University



Grapevine: Scalabllity

Can add more Registration Servers
— Eventual consistency in registration data base

— Long term inconsistency solved with periodic anti-entropy
mechanism

Can add more Message Servers

One thing didn’t scale — handling of distribution lists

— The accepting Message Server was responsible for
expanding the list (recursively if necessary) and delivering to
an appropriate Message Server for each recipient

— Some distribution lists contained essentially the entire user
community

Different classes of transparency
— Location, migration, replication

EECS 343 Operating Systems
Northwestern University




	Distributed Systems
	What is a distributed system?
	Distributed systems challenges
	Distributed systems challenges
	Loosely-coupled systems
	Closely-coupled systems
	Tightly-coupled systems
	Grapevine
	Grapevine: Functional diagram
	Grapevine: Sending a message
	Grapevine: Transport and buffering
	Grapevine: Functional diagram
	Grapevine: Retrieving mail
	Grapevine: Scalability

