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Files and file systems

Most computer applications need to:
Store large amounts of data (larger than their address space)
that must survive process termination and
can be access concurrently by multiple processes

→ Usual answer: Files – form user’s perspective, the smallest 
allotment of logical secondary storage

File system – part of the OS dealing with files
Supports the file abstraction of storage
Naming – how do users select files?
Protection – users are not all equal
Reliability – information must be safe for long periods of time
Storage mgmt. – efficient use of storage and fast access to files
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File operations
File is an ADT (Abstract Data Type) – what operations?
– Create, delete, write, read
– Reposition within file – file seek
– Truncate

Most operation involve searching the directory for file
– Open (Fi) - search directory for entry Fi, move content to memory 

(open-file table)
– Close (Fi) - move Fi content in memory to directory structure on disk

Open/Close in multiuser systems
– Per-process and system-wide tables

• Entry in the per-process table points to system-wide table
– Open counts

File locks – restricting access to a file
– Shared (read) and exclusive (write) locks
– Mandatory (OS enforced) and advisory (cooperative model) locks
– Lock files
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File attributes

Names – different for each OS
– Upper and/or lower case

Support for file extensions or just convention (Unix)
Some typical file extensions

A few other useful attributes

file.gif Graphical Interchange Format Image

file.mpg Movie encoded with MPEG standard

file.o Object file

file.txt General text file
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Protection Who can access the file & in what way

Creator ID of creator

System flag 0 for normal files; 1 for system ones

Creation time Date & time of creation

Time of last access Date & time of last access

Current size In bytes
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File types and structures

Different OSs support different file types
– Regular, binary, directories, … (example of TOPS-20)
– Extensions as hints & the use of magic numbers
– Pros and cons of strongly typed files

Several file structures, three common ways
– Byte sequence - Unix & Windows; user imposes meaning (a)
– Record sequence – think about 80-column punch cards (b)
– Tree – records have keys, tree is sorted by it (d)
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1 Byte
1 Record

Armstrong Davis Parker

Basie Blakey Coltrane

Ellington Evans Getz

Rollins Tatum Young

Hancock Hawkins Monk
(c)(a) (b)
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File access methods
Sequential Access – tape model
– Simplest and most common
– read next/write next 
– reset/seek

Random/direct access – disk model
– read n/write n, position to n and read next/write next 
– rewrite n (n = relative block number)
– Retain sequential access – read/write + update last position

Other access methods
– On top of direct access
– Normally using indexing
– Multi-level indexing for big files

• E.g. IBM ISAM (Indexed Sequential 
Access Method)
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Directory structure

To manage volume of info.: partitions & directories
Directory: set of nodes with information about all files
– Name, type, address, current & max. length, date last 

accessed

Operations on directories
– Open/close directories, create/delete/rename files from a 

directory, readdir, link/unlink, traverse the file system

Directory organizations - goals
– Efficiency – locating a file quickly.
– Naming – convenient to users.
– Grouping – logical grouping of files by properties (e.g. all Java 

progs., all games, …)
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Single and two-level directory systems

A single level directory system
– Early PCs, early supercomputers (CDC 6600), embedded 

systems?
– Pros and cons

• Fast file searches
• Name clashing

– Contains 4 files owned by 3 != people

Two-level directory system
– Avoid name conflicts bet/ users
– You may need a system’s directory
– Problems if you have too many files

File’s owner
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Hierarchical & general directory systems

Hierarchical
– Avoid name clashing for users (MULTICS)
– Powerful structuring tool for organization (decentralization)

Acyclic graphs – sharing
– Two different names (aliasing)
– If dict deletes list → dangling pointer

• Backpointers & counter 
– Unix links – pointers to files 

• Soft & hard links – (in)direct pointer

Path names
– Absolute & relative path names
– “.” & “..”
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Protection
File owner/creator should be able to control
– what can be done & by whom

Types of access
– Read, Write, Execute, Append, Delete, List, …

A general & common approach – access control list (ACL)
– Per resources – user names & types of access allowed
– Long!

Unix: short version access lists & groups
– Access modes :  read, write, execute
– Classes of users: owner, group, public
– 3 bits per for each access mode
– Mask provides a default (mine ‘022’ - octal)
– File created with 777 and mask 022 → 755

Rights Code
rwx 7 (111)

rw- 6 (110)

r-x 5 (101)

r-- 4 (100)

-wx 3 (011)

-w- 2 (010)

--x 1 (001)

--- 0 (000)
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File system layout

Disk divided into 1+ partitions – one FS per partition
Sector 0 of disk – MBR (Master Boot Record)
– Used to boot the machine

Followed by Partition Table (one marked as active)
– (start, end) per partition; one of them active

Booting: BIOS → MBR → Active partition’s boot block 
→ OS
What else in a partition?

MBR

Boot block Super block Free space mgnt I-nodes Root dir Files and directories

Entire disk

Partition table

Disk partitionDisk partition ...

Magic number, 
number of 
blocks, …
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Implementing files

Keeping track of what blocks go with which file
Contiguous allocation
– Each file is a contiguous run of disk blocks
– e.g. IBM VM/CMS
– Pros:

• Simple to implement
• Excellent read performance

– Cons:
• Fragmentation

Where would it make sense?
File A File B File FFile EFile DFile C FreeFree Free 

File X? 
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Implementing files

Linked list
– Files as a linked list of blocks
– Pros:

• Every block gets used
• Simple directory entry per file

– Cons:
• Random access is a pain
• List info in block → block data size not a power of 2
• Reliability (file kept together by pointers scattered throughout the 

disk)

Physical 
block

File 
block 
0

File 
block 
1

File 
block 
2

File 
block 
3

File 
block 
4

74 2 10 12

File A

File 
block 
0

File 
block 
1

File 
block 
2

File 
block 
3

6 3 11 14

File B
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Linked list with a table in memory
– Files as a linked list of blocks
– Pointers kept in FAT (File Allocation Table)
– Pros:

• Whole block free for data
• Random access is easy

– Cons:
• Overhead on seeks or
• Keep the entire table in memory

20GB disk & 1KB block size →
20 million entries in table →
4 bytes per entry ~ 80MB of memory

Implementing files

File 
block 
0

File 
block 
1

File 
block 
2

File 
block 
3

6 3 11 14

File B

FAT
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Implementing files

I-nodes - index-nodes
– Files as linked lists of blocks, all 

pointers in one location: i-node
– Each file has its own i-node 
– Pros:

• Support direct access
• No external fragmentation
• Only a file i-node needed in 

memory (proportional to # of open 
files instead of to disk size)

– Cons:
• Wasted space (how many 

entries?)
– More entries? Save entry to point 

to address of block of addresses

i-node 
example

File Attributes

To block 1

To block 2

To block 3

To block 4

To block 5

To block 6

To block 7

To block 8To indirect block .
.
.
.

.
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Implementing directories

Directory system function: map ASCII name onto 
what’s needed to locate the data
Related: where do we store files’ attributes?
– A simple directory: fixed size entries, attributes in entry (a)
– Directory in which each entry just refers to an i-node (b)

As a side note, you find a file based on the path name; 
this mixes what your data is with where it is – what’s 
wrong with this picture?

MS-DOS UNIX
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Implementing directories

So far we’ve assumed short file names (8 or 14 char)
Handling long file names in directory
– In-line (a)

• Fragmentation
• Entry can span multiple 

pages (page fault 
reading a file name)

– In a heap (b)
• Easy to +/- files

Searching large directories
– Hash
– Cash
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Shared files

Links and directories implementation
– Leave file’s list of disk blocks out of directory entry (i-node)

• Each entry in the directory points to the i-node
– Use symbolic links

• Link is a file w/ the path to shared file
• Link files on another machine

Problem with first solution
– Accounting

• C creates file, B links to file, C removes it
• B is the only user of a file owned by C!

Problem with symbolic links
– Performance

EECS 343 Operating Systems
Northwestern University



19

Disk space management

Once decided to store a file as sequence of blocks
– What’s the size of the block?

• Good candidates: Sector, track, cylinder, page
• Pros and cons of large/small blocks
• Decide base on median file size (instead of mean)

Keeping track of free blocks
– Storing the free list on a linked list

• Use a free block for the linked list
– A bit map

And if you run out of free space, control usage
– Quotas for user’s disk use
– Open file entry includes pointer to owner’s quota rec.
– Soft limit may be exceeded (warning)
– Hard limit may not (log in blocked)
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File system reliability

Need for backups
– Bad things happen & while HW is cheap, data is not

Backup - needs to be done efficiently & conveniently
– Not all needs to be included – /bin?
– Not need to backup what has not changed – incremental

• Shorter backup time, longer recovery time
– Still, large amounts of data – compress?
– Backing up active file systems
– Security

Strategies for backup
– Physical dump – from block 0, one at a time

• Simple and fast
• You cannot skip directories, make incremental backups, restore 

individual files
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File system reliability

Logical dumps
– Keep a bitmap indexed by i-node number
– Bits are set for

• Modified files
• Directories

– Unmarked directories w/o modified files in or under them
– Dump directories and files marked

Some more details
– Free list is not dump, reconstructed
– Unix files may have holes (core files are a good example)
– Special files, named pipes, etc. are not dumped
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File system reliability

File system consistency
fsck/scandisk ideas
– Two kind of consistency checks: blocks & files
– Blocks:

• Build two tables – a counter per block and one pass
– Similar check for directories – link counters kept in i-nodes

Missing 
block

Consistent 
state

Twice in 
free list

Part of 
more 
than one 
file

Solution – add it to the free list

Solution – rebuild the free list Solution – duplicate data block
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File system performance

Caching – to reduce disk access
– Hash (device & disk address) to find block in cache
– Cache management ~ page replacement
– Plain LRU is undesirable

• Essential blocks should be written out right away
• If blocks would not be needed again, no point on caching

– Unix sync and MS-DOS write-through cache

Block read ahead
– Clearly useless for non-sequentially read files

Reducing disk arm motion
– Put blocks likely to be accessed in seq. close to each other
– I-nodes placed at the start of the disk
– Disk divided into cylinder groups - each with its own blocks & 

i-nodes
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Log-structured file systems

CPUs getting faster, memories larger, disks bigger
– But disk seek time lags behind
– Since disk caches can also be larger → increasing number of 

read requests can come from cache
– Thus, most disk accesses will be writes

LFS strategy - structure entire disk as a log
– All writes initially buffered in memory
– Periodically write buffer to end of disk log

• Each new segment has a summary at the start
– When file opened, locate i-node, then find blocks

• Keep an i-node map in disk, index by i-node, and cache it
– To deal with finite disks: cleaner thread

• Compact segments starting at the front, first reading the 
summary, creating a new segment, marking the old one free
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The CP/M file system

Control Program for Microcomputers
Run on Intel 8080 and Zilog Z80
– 64KB main memory
– 720KB floppy as secondary storage

Separation bet/ BIOS and CP/M
for portability
Multiple users (but one at a time)
The CP/M (one) directory entry format
– Each block – 1KB (but sectors are 128B)
– Beyond 16KB – Extent
– (soft-state) Bitmap for free space

BIOS

CP/M

Zero page

User program

Shell

0

0xFFFF

0x100

Memory layout 
of CP/M

3584 
bytes!

Library of 17 
I/O calls.

Multiple users, 
one at a time
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The MS-DOS file system

Based on CP/M
Biggest improvement: hierarchical file systems (v2.0)
– Directories stored as files – no bound on hierarchy
– No links – so basic tree

Attributes include: read-only, hidden, archived, system
Time – 5b for seconds, 6b for minutes, 5b for hours
– Accurate only to +/-2 sec (2B – 65,536 sec of 86,400 sec/day)

Date – 7b for year (128 years) starting at 1980 (5b for 
day, 4b for month)

MS-DOS 
directory entry
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The MS-DOS file system

Another difference with CP/M – FAT
– First version FAT-12 with 512-byte blocks:
– Max. partition 212x 512 ~ 2MB 
– FAT with 4096 entries of 2 bytes each – 8KB

Later versions’ FATs: FAT-16 and FAT-32 (actually a 
misnomer – only the low-order 28-bits are used)
Disk block sizes can be set to multiple of 512B
FAT-16: 
– 128KB of memory
– Largest partition – 2GB ~ with block size 32KB
– Largest disk - 8GB
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The UNIX V7 file system

Unix V7 on a PDP-11
Tree structured as a DAG
File names up to 14 chars (anything but “/” and NUL)
Disk layout in classical UNIX systems

Each i-node – 64 bytes long
I-node’s attributes
– file size, three times (creation, last access, last modif.), owner, 

group, protection info, # of dir entries pointing to it
Following the i-nodes – data blocks in no particular 
order

Boot 
block

Super 
block I nodes Data blocks
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The UNIX V7 file system

A directory – an unsorted collection of 16-bytes entries

File descriptor table, open file descriptor table and i-
node table – starting from file descriptor, get the i-node
– Pointer to i-node in the file descriptor table? No, where do you 

put the current pointer? Multiple processes each w/ their own
– New table – the open file description

Directory entry

i-nodes with up to 3 
levels of indirection

Open file description

File position 
R/W Pointer 

to i-node

File position 
R/W Pointer 

to i-node

Parent’s file 
descriptor 

table

Child’s file 
descriptor 

table
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The UNIX V7 file system

Steps in looking up /usr/ast/mbox
– Locate root directory – i-node in a well-known place
– Read root directory 
– Look for i-node for /usr
– Read /usr and look for ast
– …
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Next Time

Distributed systems
– A quick introduction

Research in OS
– READ the paper 
– I’ll post a question in the course site the day before
– Homework 5: your answer to this question; due in 

class
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