
Fabián E. Bustamante, Fall 2007

File Systems

Today
Files and file systems
File system structure
File & directory implementation
Efficiency, performance, recovery
Examples

Next
Distributed systems

EECS 343 Operating Systems
Northwestern University

2

Files and file systems

Most computer applications need to:
Store large amounts of data (larger than their address space)
that must survive process termination and
can be access concurrently by multiple processes

→ Usual answer: Files – form user’s perspective, the smallest
allotment of logical secondary storage

File system – part of the OS dealing with files
Supports the file abstraction of storage
Naming – how do users select files?
Protection – users are not all equal
Reliability – information must be safe for long periods of time
Storage mgmt. – efficient use of storage and fast access to files

3

File operations
File is an ADT (Abstract Data Type) – what operations?
– Create, delete, write, read
– Reposition within file – file seek
– Truncate

Most operation involve searching the directory for file
– Open (Fi) - search directory for entry Fi, move content to memory

(open-file table)
– Close (Fi) - move Fi content in memory to directory structure on disk

Open/Close in multiuser systems
– Per-process and system-wide tables

• Entry in the per-process table points to system-wide table
– Open counts

File locks – restricting access to a file
– Shared (read) and exclusive (write) locks
– Mandatory (OS enforced) and advisory (cooperative model) locks
– Lock files

EECS 343 Operating Systems
Northwestern University

4

File attributes

Names – different for each OS
– Upper and/or lower case

Support for file extensions or just convention (Unix)
Some typical file extensions

A few other useful attributes

file.gif Graphical Interchange Format Image

file.mpg Movie encoded with MPEG standard

file.o Object file

file.txt General text file

EECS 343 Operating Systems
Northwestern University

Protection Who can access the file & in what way

Creator ID of creator

System flag 0 for normal files; 1 for system ones

Creation time Date & time of creation

Time of last access Date & time of last access

Current size In bytes

5

File types and structures

Different OSs support different file types
– Regular, binary, directories, … (example of TOPS-20)
– Extensions as hints & the use of magic numbers
– Pros and cons of strongly typed files

Several file structures, three common ways
– Byte sequence - Unix & Windows; user imposes meaning (a)
– Record sequence – think about 80-column punch cards (b)
– Tree – records have keys, tree is sorted by it (d)

EECS 343 Operating Systems
Northwestern University

1 Byte
1 Record

Armstrong Davis Parker

Basie Blakey Coltrane

Ellington Evans Getz

Rollins Tatum Young

Hancock Hawkins Monk
(c)(a) (b)

6

File access methods
Sequential Access – tape model
– Simplest and most common
– read next/write next
– reset/seek

Random/direct access – disk model
– read n/write n, position to n and read next/write next
– rewrite n (n = relative block number)
– Retain sequential access – read/write + update last position

Other access methods
– On top of direct access
– Normally using indexing
– Multi-level indexing for big files

• E.g. IBM ISAM (Indexed Sequential
Access Method)

EECS 343 Operating Systems
Northwestern University

7

Directory structure

To manage volume of info.: partitions & directories
Directory: set of nodes with information about all files
– Name, type, address, current & max. length, date last

accessed

Operations on directories
– Open/close directories, create/delete/rename files from a

directory, readdir, link/unlink, traverse the file system

Directory organizations - goals
– Efficiency – locating a file quickly.
– Naming – convenient to users.
– Grouping – logical grouping of files by properties (e.g. all Java

progs., all games, …)

EECS 343 Operating Systems
Northwestern University

8

Single and two-level directory systems

A single level directory system
– Early PCs, early supercomputers (CDC 6600), embedded

systems?
– Pros and cons

• Fast file searches
• Name clashing

– Contains 4 files owned by 3 != people

Two-level directory system
– Avoid name conflicts bet/ users
– You may need a system’s directory
– Problems if you have too many files

File’s owner

EECS 343 Operating Systems
Northwestern University

9

Hierarchical & general directory systems

Hierarchical
– Avoid name clashing for users (MULTICS)
– Powerful structuring tool for organization (decentralization)

Acyclic graphs – sharing
– Two different names (aliasing)
– If dict deletes list → dangling pointer

• Backpointers & counter
– Unix links – pointers to files

• Soft & hard links – (in)direct pointer

Path names
– Absolute & relative path names
– “.” & “..”

EECS 343 Operating Systems
Northwestern University

10

Protection
File owner/creator should be able to control
– what can be done & by whom

Types of access
– Read, Write, Execute, Append, Delete, List, …

A general & common approach – access control list (ACL)
– Per resources – user names & types of access allowed
– Long!

Unix: short version access lists & groups
– Access modes : read, write, execute
– Classes of users: owner, group, public
– 3 bits per for each access mode
– Mask provides a default (mine ‘022’ - octal)
– File created with 777 and mask 022 → 755

Rights Code
rwx 7 (111)

rw- 6 (110)

r-x 5 (101)

r-- 4 (100)

-wx 3 (011)

-w- 2 (010)

--x 1 (001)

--- 0 (000)

EECS 343 Operating Systems
Northwestern University

11

File system layout

Disk divided into 1+ partitions – one FS per partition
Sector 0 of disk – MBR (Master Boot Record)
– Used to boot the machine

Followed by Partition Table (one marked as active)
– (start, end) per partition; one of them active

Booting: BIOS → MBR → Active partition’s boot block
→ OS
What else in a partition?

MBR

Boot block Super block Free space mgnt I-nodes Root dir Files and directories

Entire disk

Partition table

Disk partitionDisk partition ...

Magic number,
number of
blocks, …

EECS 343 Operating Systems
Northwestern University

12

Implementing files

Keeping track of what blocks go with which file
Contiguous allocation
– Each file is a contiguous run of disk blocks
– e.g. IBM VM/CMS
– Pros:

• Simple to implement
• Excellent read performance

– Cons:
• Fragmentation

Where would it make sense?
File A File B File FFile EFile DFile C FreeFree Free

File X?

EECS 343 Operating Systems
Northwestern University

13

Implementing files

Linked list
– Files as a linked list of blocks
– Pros:

• Every block gets used
• Simple directory entry per file

– Cons:
• Random access is a pain
• List info in block → block data size not a power of 2
• Reliability (file kept together by pointers scattered throughout the

disk)

Physical
block

File
block
0

File
block
1

File
block
2

File
block
3

File
block
4

74 2 10 12

File A

File
block
0

File
block
1

File
block
2

File
block
3

6 3 11 14

File B

EECS 343 Operating Systems
Northwestern University

14

Linked list with a table in memory
– Files as a linked list of blocks
– Pointers kept in FAT (File Allocation Table)
– Pros:

• Whole block free for data
• Random access is easy

– Cons:
• Overhead on seeks or
• Keep the entire table in memory

20GB disk & 1KB block size →
20 million entries in table →
4 bytes per entry ~ 80MB of memory

Implementing files

File
block
0

File
block
1

File
block
2

File
block
3

6 3 11 14

File B

FAT

EECS 343 Operating Systems
Northwestern University

15

Implementing files

I-nodes - index-nodes
– Files as linked lists of blocks, all

pointers in one location: i-node
– Each file has its own i-node
– Pros:

• Support direct access
• No external fragmentation
• Only a file i-node needed in

memory (proportional to # of open
files instead of to disk size)

– Cons:
• Wasted space (how many

entries?)
– More entries? Save entry to point

to address of block of addresses

i-node
example

File Attributes

To block 1

To block 2

To block 3

To block 4

To block 5

To block 6

To block 7

To block 8To indirect block .
.
.
.

.

EECS 343 Operating Systems
Northwestern University

16

Implementing directories

Directory system function: map ASCII name onto
what’s needed to locate the data
Related: where do we store files’ attributes?
– A simple directory: fixed size entries, attributes in entry (a)
– Directory in which each entry just refers to an i-node (b)

As a side note, you find a file based on the path name;
this mixes what your data is with where it is – what’s
wrong with this picture?

MS-DOS UNIX

EECS 343 Operating Systems
Northwestern University

17

Implementing directories

So far we’ve assumed short file names (8 or 14 char)
Handling long file names in directory
– In-line (a)

• Fragmentation
• Entry can span multiple

pages (page fault
reading a file name)

– In a heap (b)
• Easy to +/- files

Searching large directories
– Hash
– Cash

EECS 343 Operating Systems
Northwestern University

18

Shared files

Links and directories implementation
– Leave file’s list of disk blocks out of directory entry (i-node)

• Each entry in the directory points to the i-node
– Use symbolic links

• Link is a file w/ the path to shared file
• Link files on another machine

Problem with first solution
– Accounting

• C creates file, B links to file, C removes it
• B is the only user of a file owned by C!

Problem with symbolic links
– Performance

EECS 343 Operating Systems
Northwestern University

19

Disk space management

Once decided to store a file as sequence of blocks
– What’s the size of the block?

• Good candidates: Sector, track, cylinder, page
• Pros and cons of large/small blocks
• Decide base on median file size (instead of mean)

Keeping track of free blocks
– Storing the free list on a linked list

• Use a free block for the linked list
– A bit map

And if you run out of free space, control usage
– Quotas for user’s disk use
– Open file entry includes pointer to owner’s quota rec.
– Soft limit may be exceeded (warning)
– Hard limit may not (log in blocked)

EECS 343 Operating Systems
Northwestern University

20

File system reliability

Need for backups
– Bad things happen & while HW is cheap, data is not

Backup - needs to be done efficiently & conveniently
– Not all needs to be included – /bin?
– Not need to backup what has not changed – incremental

• Shorter backup time, longer recovery time
– Still, large amounts of data – compress?
– Backing up active file systems
– Security

Strategies for backup
– Physical dump – from block 0, one at a time

• Simple and fast
• You cannot skip directories, make incremental backups, restore

individual files

EECS 343 Operating Systems
Northwestern University

21

File system reliability

Logical dumps
– Keep a bitmap indexed by i-node number
– Bits are set for

• Modified files
• Directories

– Unmarked directories w/o modified files in or under them
– Dump directories and files marked

Some more details
– Free list is not dump, reconstructed
– Unix files may have holes (core files are a good example)
– Special files, named pipes, etc. are not dumped

EECS 343 Operating Systems
Northwestern University

22

File system reliability

File system consistency
fsck/scandisk ideas
– Two kind of consistency checks: blocks & files
– Blocks:

• Build two tables – a counter per block and one pass
– Similar check for directories – link counters kept in i-nodes

Missing
block

Consistent
state

Twice in
free list

Part of
more
than one
file

Solution – add it to the free list

Solution – rebuild the free list Solution – duplicate data block

EECS 343 Operating Systems
Northwestern University

23

File system performance

Caching – to reduce disk access
– Hash (device & disk address) to find block in cache
– Cache management ~ page replacement
– Plain LRU is undesirable

• Essential blocks should be written out right away
• If blocks would not be needed again, no point on caching

– Unix sync and MS-DOS write-through cache

Block read ahead
– Clearly useless for non-sequentially read files

Reducing disk arm motion
– Put blocks likely to be accessed in seq. close to each other
– I-nodes placed at the start of the disk
– Disk divided into cylinder groups - each with its own blocks &

i-nodes

EECS 343 Operating Systems
Northwestern University

24

Log-structured file systems

CPUs getting faster, memories larger, disks bigger
– But disk seek time lags behind
– Since disk caches can also be larger → increasing number of

read requests can come from cache
– Thus, most disk accesses will be writes

LFS strategy - structure entire disk as a log
– All writes initially buffered in memory
– Periodically write buffer to end of disk log

• Each new segment has a summary at the start
– When file opened, locate i-node, then find blocks

• Keep an i-node map in disk, index by i-node, and cache it
– To deal with finite disks: cleaner thread

• Compact segments starting at the front, first reading the
summary, creating a new segment, marking the old one free

EECS 343 Operating Systems
Northwestern University

25

The CP/M file system

Control Program for Microcomputers
Run on Intel 8080 and Zilog Z80
– 64KB main memory
– 720KB floppy as secondary storage

Separation bet/ BIOS and CP/M
for portability
Multiple users (but one at a time)
The CP/M (one) directory entry format
– Each block – 1KB (but sectors are 128B)
– Beyond 16KB – Extent
– (soft-state) Bitmap for free space

BIOS

CP/M

Zero page

User program

Shell

0

0xFFFF

0x100

Memory layout
of CP/M

3584
bytes!

Library of 17
I/O calls.

Multiple users,
one at a time

EECS 343 Operating Systems
Northwestern University

26

The MS-DOS file system

Based on CP/M
Biggest improvement: hierarchical file systems (v2.0)
– Directories stored as files – no bound on hierarchy
– No links – so basic tree

Attributes include: read-only, hidden, archived, system
Time – 5b for seconds, 6b for minutes, 5b for hours
– Accurate only to +/-2 sec (2B – 65,536 sec of 86,400 sec/day)

Date – 7b for year (128 years) starting at 1980 (5b for
day, 4b for month)

MS-DOS
directory entry

EECS 343 Operating Systems
Northwestern University

27

The MS-DOS file system

Another difference with CP/M – FAT
– First version FAT-12 with 512-byte blocks:
– Max. partition 212x 512 ~ 2MB
– FAT with 4096 entries of 2 bytes each – 8KB

Later versions’ FATs: FAT-16 and FAT-32 (actually a
misnomer – only the low-order 28-bits are used)
Disk block sizes can be set to multiple of 512B
FAT-16:
– 128KB of memory
– Largest partition – 2GB ~ with block size 32KB
– Largest disk - 8GB

EECS 343 Operating Systems
Northwestern University

28

The UNIX V7 file system

Unix V7 on a PDP-11
Tree structured as a DAG
File names up to 14 chars (anything but “/” and NUL)
Disk layout in classical UNIX systems

Each i-node – 64 bytes long
I-node’s attributes
– file size, three times (creation, last access, last modif.), owner,

group, protection info, # of dir entries pointing to it
Following the i-nodes – data blocks in no particular
order

Boot
block

Super
block I nodes Data blocks

EECS 343 Operating Systems
Northwestern University

29

The UNIX V7 file system

A directory – an unsorted collection of 16-bytes entries

File descriptor table, open file descriptor table and i-
node table – starting from file descriptor, get the i-node
– Pointer to i-node in the file descriptor table? No, where do you

put the current pointer? Multiple processes each w/ their own
– New table – the open file description

Directory entry

i-nodes with up to 3
levels of indirection

Open file description

File position
R/W Pointer

to i-node

File position
R/W Pointer

to i-node

Parent’s file
descriptor

table

Child’s file
descriptor

table

EECS 343 Operating Systems
Northwestern University

30

The UNIX V7 file system

Steps in looking up /usr/ast/mbox
– Locate root directory – i-node in a well-known place
– Read root directory
– Look for i-node for /usr
– Read /usr and look for ast
– …

EECS 343 Operating Systems
Northwestern University

31

Next Time

Distributed systems
– A quick introduction

Research in OS
– READ the paper
– I’ll post a question in the course site the day before
– Homework 5: your answer to this question; due in

class

EECS 343 Operating Systems
Northwestern University

	File Systems
	Files and file systems
	File operations
	File attributes
	File types and structures
	File access methods
	Directory structure
	Single and two-level directory systems
	Hierarchical & general directory systems
	Protection
	File system layout
	Implementing files
	Implementing files
	Implementing files
	Implementing files
	Implementing directories
	Implementing directories
	Shared files
	Disk space management
	File system reliability
	File system reliability
	File system reliability
	File system performance
	Log-structured file systems
	The CP/M file system
	The MS-DOS file system
	The MS-DOS file system
	The UNIX V7 file system
	The UNIX V7 file system
	The UNIX V7 file system
	Next Time

