
Fabián E. Bustamante, Fall 2007

Design and Implementation Issues

Today
Design issues for paging systems
Implementation issues
Segmentation

Next
I/O

2

Details of the MMU work

Again, MMU with 16 4KB pages
Page # (first 4 bits) index into page table
If not there
– Page fault

Else
– Output register +
– 12 bit offset →
– 15 bit physical address

Page
number

Offset

EECS 343 Operating Systems
Northwestern University

3

Considerations with page tables

Two key issues with page tables
Mapping must be fast
– It must be done on every memory reference, at least 1 per

instruction

With large address spaces, page tables are too big
w/ 32 bit & 4KB page → 12 bit offset, 20 bit page # ~ 1million
w/ 64 bit & 4KB page → 212 (offset) + 252 pages ~ 4.5x1015!!!

Simplest solutions
– Page table in registers

• Fast during execution, but potentially expensive & slow to
context switch

– Page table in memory and one register pointing to start
• Fast to context switch and cheap, but slow during execution

EECS 343 Operating Systems
Northwestern University

4

Hierarchical page table
Page the page table!
Same argument – you don’t need the full page table in memory
Virtual address (32-bit machine, 4KB page):
Page # (20 bits) + Offset (12 bits)
Since page table is paged, page number is divided:
Page number (10 bits) + Page offset in 2nd level (10 bits)

p1| p2 | offset

p1 - index into the outer page table
p2 - displacement within outer page

Example
Virtual address: 0x00403004
0000 0000 0100 0000 0011 0000 0000 0100

EECS 343 Operating Systems
Northwestern University

P1 = 1 P2 = 3 Offset = 4

5

Page table entry

Looking at the details

– Page frame number – the most important field
– Protection – 1 bit for R&W or R or 3 bits for RWX
– Present/absent bit

• Says whether or not the virtual address is used
– Modified (M): dirty bit

• Set when a write to the page has occurred
– Referenced (R): Has it being used?
– To ensure we are not reading from cache (D)

• Key for pages that map onto device registers rather than memory

… Page frame numberProt.

Present/absent

RMD

Caching disable

EECS 343 Operating Systems
Northwestern University

6

Inverted and hashed page tables

Another way to save space – inverted page tables
– Page tables are index by virtual page #, thus their size
– Inverted page tables – one entry per page frame

• Problem – too slow mapping!
– Hash tables may help
– Also, Translation Lookaside Buffer (TLB) …

EECS 343 Operating Systems
Northwestern University

7

Small # entries (~64) – cache for page table entry
Associative memory – parallel search
– If hit – page frame is taken from there
– Else – page table lookup + TLB replacement

In many new architectures, TLB mgmnt. is done in
software (simpler MMUs)
– Entries loaded by OS
– OS responsible for

handle miss too

Translation lookaside buffer (TLB)

Paging Hardware
with TLB

EECS 343 Operating Systems
Northwestern University

8

Effective access time

Associative Lookup = ε time units
Hit ratio - α - percentage of times that a page number
is found in the associative registers (ratio related to
TLB size)

Effective Memory Access Time (EAT)

EAT = α * (ε + memory-access) + (1 - α) (ε + 2* memory-access)

α = 80% ε = 20 nsec memory-access = 100 nsec

EAT = 0.8 * (20 + 100) + 0.2 * (20 + 2 * 100) = 140 nsec

TLB hit TLB miss

EECS 343 Operating Systems
Northwestern University

9

Design issues – global vs. local policy

When you need a page frame
– Pick a victim among your own resident pages? Local
– Or among all pages? Global

Local algorithms
– Basically every process gets a fixed % of memory

Global algorithms
– Dynamically allocate frames among processes
– Better, especially if working set size changes during execution
– How many page frames per process?

• Start with a basic set and react to Page Fault Frequency (PFF)

Except for working set based algorithms, all the page
replacement algorithms we’ve seen work both ways
Why not working set based algorithms?

EECS 343 Operating Systems
Northwestern University

10

Load control

Despite good designs, system may still thrash
– Sum of working sets > physical memory

Page Fault Frequency (PFF) indicates that
– Some processes need more memory
– but no process needs less

Way out: Swapping
– So yes, even with paging you still need swapping
– Reduce number of processes competing for memory
– ~ two-level scheduling – careful with which process to swap

out (there’s more than just paging to worry about!)
What would you like of the remaining processes?

EECS 343 Operating Systems
Northwestern University

11

Page size

OS can pick a page size (how?) - small or large?
Small
– Less internal fragmentation
– Better fit for various data structures, code sections
– Less unused program in memory,
but …
– More I/O time, getting page from disk … most of the time goes

into seek and rotational delay!
– Larger page tables

Average process size s
Page size p
Page entry size e

overhead = se / p + p/2

Taking first derivative respect to p
and equating it to zero

-se / p2 + 1/2 = 0

p = √2se

s = 1MB
e = 8 bytes
Optimal p = 4KB

Page table
space

Internal
fragmentation

EECS 343 Operating Systems
Northwestern University

12

Separate instruction & data spaces

One address space – size limit
Pioneered by PDP-11: 2 address spaces, Instruction
and Data spaces
– Double the space
– Each with its own page table & paging algorithm

EECS 343 Operating Systems
Northwestern University

13

Shared pages

In large multiprogramming systems – multiple users
running same program - share pages?
Some details
– Not all is shareable
– With I-space and D-space, sharing would be easier
– What do you do if you swap one of the sharing process out?

Sharing data is slightly trickier than sharing code
– Fork in Unix
– Sharing both data and program bet/ parent and child; each

with its own page table but pages marked as READ ONLY
– Copy On Write

EECS 343 Operating Systems
Northwestern University

14

Cleaning policy

To avoid having to write pages out when needed –
paging daemon
– Periodically inspects state of memory
– Keep enough pages free
– If we need the page before it’s overwritten – reclaim it!

Two hands for better performance (BSD)
– First one clears R, second checks it
– If hands are kept close, only heavily used pages have a

chance
– If back is just ahead of front hand (359 degrees), original clock
– When? If there are less than x free pages

EECS 343 Operating Systems
Northwestern University

15

Virtual memory interface

So far, transparent virtual memory
Some control for expert use
– For shared memory – fast IPC

– For distributed shared memory
Going to disk may be slower than going to somebody else’s

memory!

client server

IPC: pipe, etc

client servershared mem.

user/kernel

EECS 343 Operating Systems
Northwestern University

16

Implementation issues
Operating System involvement w/ paging:

Process creation
– Determine program size, allocate space for page table, for

swap, bring stuff into swap, record info into PCB
Process execution
– Reset MMU for new process, flush TLB, make new page table

current, pre-page?
Page fault time
– Find out which virtual address cause the fault, find page in

disk, get page frame, load page, reset PC, …
Process termination time
– Release page table, pages, swap space, careful with shared

pages

EECS 343 Operating Systems
Northwestern University

17

Page fault handling

Hardware traps to kernel
General registers saved by assembler routine, OS
called
OS find which virtual page cause the fault
OS checks address is valid, seeks page frame
If selected frame is dirty, write it to disk (CS)
Get new page (CS), update page table
Back up instruction where interrupted
Schedule faulting process
Routine load registers & other state and return to user
space

EECS 343 Operating Systems
Northwestern University

18

Instruction backup

As we’ve seen, when a program causes a page fault,
the current instruction is stopped part way through …
Harder than you think!
– Consider instruction: MOV.L #6(A1), 2(A0)
– Which one caused the page fault?
– It can even get worse – auto-decrement and auto-increment?

Some CPU designers have included hidden registers
to store
– Beginning of instruction
– Indicate autodecr./autoincr. and amount

EECS 343 Operating Systems
Northwestern University

19

Locking pages in memory

Virtual memory and I/O occasionally interact
Process issues call for read from device
– While waiting for I/O, another processes starts up
– Second process has a page fault
– Buffer for the first process may be chosen to be

paged out!
Solutions:
– Pinning down pages in memory
– Do all I/O to kernel buffers and copy later

EECS 343 Operating Systems
Northwestern University

20

Backing store

How do we manage swap area?
– Allocate space to process when started
– Keep offset to process swap area in PCB
– Process can be brought entirely when started or as

needed
Some problems
– Size – process can grow … split text/data/stack

segments in swap area
– Do not allocate anything … you may need extra

memory to keep track of pages in swap!

EECS 343 Operating Systems
Northwestern University

21

Separation of policy & mechanism

How to structure the memory management system for
easy separation? Mach:
1. Low-level MMU handler – machine dependent
2. Page-fault handler in kernel – machine independent, most of paging

mechanism
3. External pager in user space – user-level process

Where do you put the
page replacement
algorithm?
Pros and cons

User space

Kernel space

Fault
handler

MMU
handler

External
pager

1.Page fault

User
process

2.Need
page

5.Here!

6.Map page in

3-4.Page
in/out of

disk

EECS 343 Operating Systems
Northwestern University

22

Segmentation

So far - one-dimensional address spaces
For many problems, having multiple AS is better
e.g. compiler with various tables that grow dynamically

Multiple AS → segments
– A logical entity – programmer knows
– Different segments of different sizes
– Each one growing independently
– Address now includes segment # + offset
– Protection per segment can be different

Symbol
table

Source text

free

free

Symbol
table

free

Source text

Segments

EECS 343 Operating Systems
Northwestern University

23

Paging vs. segmentation

Consideration Paging Segmentation

Need the programmer be
aware?

No Yes

Linear address spaces 1 Many

Can procedure & data be
distinguished &
separately protected?

No Yes

Is sharing procedures bet/
processes facilitated?

No Yes

Why was the technique
invented?

Get a large virtual space
w/o more physical
memory?

Allow programs & data to
be broken into logically
independent address
spaces
Aid sharing & protection

EECS 343 Operating Systems
Northwestern University

24

Segmentation w/ paging - MULTICS

Large segment? Page them e.g MULTICS & Pentium
Process: 218 segments of ~64K words (36-bit)
Most segments are paged
Process has a segment table (itself a paged segment)
Segment descriptor indicates if in memory
Segment descriptor points to page table
Address of segment in secondary memory in another table

Segment # (18b) Page # (6b) Offset (10b)

Virtual Address

Page entry

Page entry

Page entry

….

Page entry

Page entry

Page entry

….
Segment desc.

Segment desc.

Segment desc.

….

Descriptor
segment

Page table

EECS 343 Operating Systems
Northwestern University

25

Segmentation w/ paging - MULTICS

With memory references
Segment # to get segment descriptor
If segment in memory, segment’s page table is in memory
Protection violation?
Look at the page table’s entry - is page in memory?
Add offset to page origin to get word location
… to speed things up - TLB

Segment
Descriptor

EECS 343 Operating Systems
Northwestern University

26

Next time

Principles of I/O hardware and software
Disks and disk arrays
… file systems

EECS 343 Operating Systems
Northwestern University

	Design and Implementation Issues
	Details of the MMU work
	Considerations with page tables
	Hierarchical page table
	Page table entry
	Inverted and hashed page tables
	Translation lookaside buffer (TLB)
	Effective access time
	Design issues – global vs. local policy
	Load control
	Page size
	Separate instruction & data spaces
	Shared pages
	Cleaning policy
	Virtual memory interface
	Implementation issues
	Page fault handling
	Instruction backup
	Locking pages in memory
	Backing store
	Separation of policy & mechanism
	Segmentation
	Paging vs. segmentation
	Segmentation w/ paging - MULTICS
	Segmentation w/ paging - MULTICS
	Next time

