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Before virtual memory

Handling processes >> than allocated memory
Keep in memory only what’s needed
Overlay approach: implemented by user
– Easy on the OS
– Hard on the programmer

Overlay for a two-pass 
assembler:
Pass 1                  70KB                          
Pass 2                    80KB                            
Symbol Table         20KB           
Common Routines 30KB          
Total 200KB  

Two overlays: 120 + 130KB
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Virtual memory

Hiding the complexity
– The combined size of program, data and stack >> physical 

memory available for it
– OS keeps parts of program in use in memory, rest in disk
– Set of addresses a program can generate – virtual address 

space
– Translate that to physical limitation – physical address
– Doing the translation – MMU

Most common approach – paging 
– Virtual address space 

split into pages
– Physical memory into 

page frames
– Page & page frames =

size (512B … 64KB)
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Pages, page frames and tables

With 
64KB virtual address space
4KB pages
32KB physical address space
16 pages and 8 page frames

Try to access :

• MOV REG, 0
Virtual address 0
Page frame 2
Physical address 8192

• MOV REG, 8192
Virtual address 8192
Page frame 6
Physical address 24576

• MOV REG, 20500
Virtual address 20500 (20480 + 20)
Page frame 3
Physical address 20+12288 
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Since virtual memory >> physical memory

Use a present/absent bit
MMU checks –
– If not there, “page fault” to 

the OS (trap)
– OS picks a victim (?)
– … sends victim to disk
– … brings new one
– … updates page table

MOVE REG, 32780
Virtual address 32780
Virtual page 8, byte 12 (32768+12)
Page is unmapped – page fault!
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Page replacement algorithms

Virtual address space >> physical one
OS uses main mem as (page) cache – demand paging
Page fault – cache miss
– Need room for new page? Page replacement algorithm
– What’s your best candidate for removal?

What do you do with victim page?
– Modified page must first be saved
– Unmodified one just overwritten
– Better not to choose an often used page

• It will probably need to be brought back in soon

Try to avoid thrashing
– OS wastes most of the time moving pages around
– Fix the algorithm, swap out somebody, get more memory
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Why does demand paging work?

Locality
– Temporal locality – location recently referenced tend to be 

referenced again soon
– Spatial locality – locations near recently referenced are more 

likely to be referenced soon

Locality means paging could be infrequent
– Once you brought a page in, you’ll use it many times
– Some issues that may play against you

• Degree of locality of application
• Page replacement policy and application reference pattern
• Amount of physical memory and application footprint
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Optimal algorithm (Belady’s algorithm)

The best page to replace is the one you’ll never need 
again
– Replace page needed at the farthest point in future
– Optimal but unrealizable

Estimate by …
– Logging page use on previous runs of  process
– Although impractical, useful for comparison
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FIFO algorithm

Maintain a linked list of all pages – in order of arrival
Victim is first page of list
– Maybe the oldest page will not be used again …

Disadvantage
– But maybe it will – the fact is, you have no idea!
– Increasing physical memory might increase page faults 

(Belady’s anomaly, we’ll come back to this)
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Not recently used (NRU) algorithm

Each page has Reference and Modified bits
– Set when page is referenced, modified
– R bit set means recently referenced, so you must clear it 

every now and then

Pages are classified

NRU removes page at random
– from lowest numbered, non-empty class

Easy to understand, relatively efficient to implement 
and sort-of OK performance

R M Class
0 0 Not referenced, not modified (0,0 → 0)

0 1 Not referenced, modified (0,1 → 1)

1 0 Referenced, but not modified (1,0 → 2)

1 1 Referenced and modified (1,1 → 3)
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Second chance algorithm

Simple modification of FIFO – look at the R bit
Operation of second chance
– Pages sorted in FIFO order
– Page list if fault occurs at time 20, A has R bit set

(time is loading time)

Page Time R

H 18 X

G 15 X

F 14 X

E 12 X

D 8 X

C 7 X

B 3 0

A 0 1

Page Time R

A 20 0

H 18 X

G 15 X

F 14 X

E 12 X

D 8 X

C 7 X

B 3 0

Most recently loaded

Oldest page
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Clock algorithm

Quit moving pages around – move a pointer?
Same as Second chance but for implementation
– When page fault
– Look at page pointed at by hand

• If R = 0, evict page
• If R = 1. clear R & move hand
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Least recently used (LRU) algorithm

Pages used recently will used again soon
– Throw out page unused for longest time

Must keep a linked list of pages
– Most recently used at front, least at rear
– Update this list every memory reference !!

Alternatively keep counter in page table entry
– Choose page with lowest value counter
– Periodically zero the counter
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A second HW LRU implementation

Use a matrix – n page frames – n x n matrix
Page k is reference
– Set all bits of row k to 1
– Set all bits of column k to 0

Page of lowest row is LRU
0,1,2,3,2,1,0,3,2
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Simulating LRU in software

Not Frequently Used 
– Software counter per page
– At clock interrupt – add R to counter for each page
– Problem - it never forgets!

Better – Aging
– Push R from the left, drop bit on the right 
– How is this not LRU? One bit per tick & a finite number of bits 

per counter
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Working set algorithm

Most programs exhibit locality of reference – over a 
short time, just a few common pages
Working set
– Set of pages used by the k most recent memory references
– ws(k, t) – size of the working set at time t (k is the working set 

window size)
– What bounds ws(k, t) as you increase k?
– How could you use this knowledge to reduce turnaround 

time?

Clearly ws(ki,t) ≤ ws(kj,t) 
for i < j

ws(k,t)

k
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Working set algorithm

Working set and page replacement
– Victim – a page not in the working set

At each clock interrupt – scan the page table
– R = 1? Write Current Virtual Time (CVT) into Time of Last Use
– R = 0? CVT – Time of Last Use > Threshold ? out! else see if 

there’s someone and evict oldest (w/ R=0) 
– If all are in the working set (all R = 1) random

EECS 343 Operating Systems
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WSClock algorithm
Problem with WS algorithm – Scans the whole table
Combine clock & working set
– If R = 1, same as working set
– If R = 0, if age > T and page clean, out
– If dirty, schedule write and 

check next one
– If loop around, 

There’s 1+ write scheduled –
you’ll have a clean page soon

There’s none, pick any one

R = 0 & 2204 – 1213 > T
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Belady's anomaly

The more page frames the fewer page faults, right?
– FIFO with 3 page frames
– FIFO with 4 page frames

0 1 2 3 0 1 4

0 1 2 3 0 1

0 1 2 3 0

0    1     2    3    0     1    4     0    1     2    3    4

0 1 2 3 3 3 4

0 1 2 2 2 3

0 1 1 1 2

0 0 0 1

P P P P P P P

P P P P

All page frames 
initially empty
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Belady's anomaly

The more page frames the fewer page faults, right?
– FIFO with 3 page frames
– FIFO with 4 page frames

0 1 2 3 0 1 4 4 4 2 3 3

0 1 2 3 0 1 1 1 4 2 2

0 1 2 3 0 0 0 1 4 4

0 1 2 3 3 3 4 0 1 2 3 4

0 1 2 2 2 3 4 0 1 2 3

0 1 1 1 2 3 4 0 1 2

0 0 0 1 2 3 4 0 1

P P P P P P P P P

P P P P PPPPPP

9 page faults

10 page faults

0    1     2    3    0     1    4     0    1     2    3    4
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Modeling page replacement algorithms

Paging system can be characterized by
– Page replacement algorithm
– a reference string
– # page frames

Abstract interpreter with
– Internal array, M, to keep track of memory state

• Size of (M) = # virtual pages, n 
– Split in two parts 

• Top m entries, for m pages frame
• The bottom part (n – m) for pages that have been referenced but 

eventually paged out
– Initially M is empty
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An example using LRU

Pages in page 
frames

Pages paged 
out to disk

Reference to a page (5) out of 
the blue box → page fault
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Distance string – each page reference 
denoted by the distance from top of the 
stack where the page was located (if not 
yet referenced: ∞)

Stack algorithms

Probability density function 
of two distance strings

Model works well with other algorithms. Particularly interesting …
Stack algorithm:  M(m,r) ⊆ M(m+1,r)
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Pages in memory with m
pages frames and after r
memory references
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Distance string & page faults

Computation of page fault rate from distance string 
Ci – number of occurrences of i in distance string
Fm – number of page faults with m frames
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Distance string & page faults

Computation of page fault rate from distance string 
Ci – number of occurrences of i in distance string
Fm – number of page faults with m frames
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Next time …

You now understand how things work, i.e. the 
mechanism …
Next time we’ll consider design and 
implementation issues for paging systems – or 
things you want/need to pay attention for good 
performance
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