
Fabián E. Bustamante, Fall 2007

Virtual Memory

Today
Virtual memory
Page replacement algorithms
Modeling page replacement algorithms

20K

30K

10K

Common
routines

Symbol
tables

Overlay
driver

2

Before virtual memory

Handling processes >> than allocated memory
Keep in memory only what’s needed
Overlay approach: implemented by user
– Easy on the OS
– Hard on the programmer

Overlay for a two-pass
assembler:
Pass 1 70KB
Pass 2 80KB
Symbol Table 20KB
Common Routines 30KB
Total 200KB

Two overlays: 120 + 130KB

EECS 343 Operating Systems
Northwestern University

Pass 170K
Pass 2

80K

3

Virtual memory

Hiding the complexity
– The combined size of program, data and stack >> physical

memory available for it
– OS keeps parts of program in use in memory, rest in disk
– Set of addresses a program can generate – virtual address

space
– Translate that to physical limitation – physical address
– Doing the translation – MMU

Most common approach – paging
– Virtual address space

split into pages
– Physical memory into

page frames
– Page & page frames =

size (512B … 64KB)

EECS 343 Operating Systems
Northwestern University

4

Pages, page frames and tables

With
64KB virtual address space
4KB pages
32KB physical address space
16 pages and 8 page frames

Try to access :

• MOV REG, 0
Virtual address 0
Page frame 2
Physical address 8192

• MOV REG, 8192
Virtual address 8192
Page frame 6
Physical address 24576

• MOV REG, 20500
Virtual address 20500 (20480 + 20)
Page frame 3
Physical address 20+12288

EECS 343 Operating Systems
Northwestern University

5

Since virtual memory >> physical memory

Use a present/absent bit
MMU checks –
– If not there, “page fault” to

the OS (trap)
– OS picks a victim (?)
– … sends victim to disk
– … brings new one
– … updates page table

MOVE REG, 32780
Virtual address 32780
Virtual page 8, byte 12 (32768+12)
Page is unmapped – page fault!

EECS 343 Operating Systems
Northwestern University

6

Page replacement algorithms

Virtual address space >> physical one
OS uses main mem as (page) cache – demand paging
Page fault – cache miss
– Need room for new page? Page replacement algorithm
– What’s your best candidate for removal?

What do you do with victim page?
– Modified page must first be saved
– Unmodified one just overwritten
– Better not to choose an often used page

• It will probably need to be brought back in soon

Try to avoid thrashing
– OS wastes most of the time moving pages around
– Fix the algorithm, swap out somebody, get more memory

EECS 343 Operating Systems
Northwestern University

7

Why does demand paging work?

Locality
– Temporal locality – location recently referenced tend to be

referenced again soon
– Spatial locality – locations near recently referenced are more

likely to be referenced soon

Locality means paging could be infrequent
– Once you brought a page in, you’ll use it many times
– Some issues that may play against you

• Degree of locality of application
• Page replacement policy and application reference pattern
• Amount of physical memory and application footprint

EECS 343 Operating Systems
Northwestern University

8

Optimal algorithm (Belady’s algorithm)

The best page to replace is the one you’ll never need
again
– Replace page needed at the farthest point in future
– Optimal but unrealizable

Estimate by …
– Logging page use on previous runs of process
– Although impractical, useful for comparison

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

1 1
2

1
2
3

1
2
3
4

1
2
3
5

1
2
3
5

1
2
3
4

1
2
3
4

Need room
for this one

Your ideal
victim!

EECS 343 Operating Systems
Northwestern University

9

FIFO algorithm

Maintain a linked list of all pages – in order of arrival
Victim is first page of list
– Maybe the oldest page will not be used again …

Disadvantage
– But maybe it will – the fact is, you have no idea!
– Increasing physical memory might increase page faults

(Belady’s anomaly, we’ll come back to this)

A, B, C, D, A, B, E, A, B, C, D, E

E
B
A

A B
A

C
B
A B

D
C D

A

C

B
A
D

E
B
A

E
B
A

C
E
B

D
C
E

D
C
E

EECS 343 Operating Systems
Northwestern University

10

Not recently used (NRU) algorithm

Each page has Reference and Modified bits
– Set when page is referenced, modified
– R bit set means recently referenced, so you must clear it

every now and then

Pages are classified

NRU removes page at random
– from lowest numbered, non-empty class

Easy to understand, relatively efficient to implement
and sort-of OK performance

R M Class
0 0 Not referenced, not modified (0,0 → 0)

0 1 Not referenced, modified (0,1 → 1)

1 0 Referenced, but not modified (1,0 → 2)

1 1 Referenced and modified (1,1 → 3)

EECS 343 Operating Systems
Northwestern University

How can this occur?

11

Second chance algorithm

Simple modification of FIFO – look at the R bit
Operation of second chance
– Pages sorted in FIFO order
– Page list if fault occurs at time 20, A has R bit set

(time is loading time)

Page Time R

H 18 X

G 15 X

F 14 X

E 12 X

D 8 X

C 7 X

B 3 0

A 0 1

Page Time R

A 20 0

H 18 X

G 15 X

F 14 X

E 12 X

D 8 X

C 7 X

B 3 0

Most recently loaded

Oldest page

EECS 343 Operating Systems
Northwestern University

12

Clock algorithm

Quit moving pages around – move a pointer?
Same as Second chance but for implementation
– When page fault
– Look at page pointed at by hand

• If R = 0, evict page
• If R = 1. clear R & move hand

EECS 343 Operating Systems
Northwestern University

R: 0
A R: 0

B
R: 1

C

R: 1

D

R: 0

E

R: 0

F

R: 0

G
R: 0

G
R: 1

I

R: 1
J

R: 0
K

R: 0
L

R: 0

R: 0

13

Least recently used (LRU) algorithm

Pages used recently will used again soon
– Throw out page unused for longest time

Must keep a linked list of pages
– Most recently used at front, least at rear
– Update this list every memory reference !!

Alternatively keep counter in page table entry
– Choose page with lowest value counter
– Periodically zero the counter

EECS 343 Operating Systems
Northwestern University

14

A second HW LRU implementation

Use a matrix – n page frames – n x n matrix
Page k is reference
– Set all bits of row k to 1
– Set all bits of column k to 0

Page of lowest row is LRU
0,1,2,3,2,1,0,3,2

EECS 343 Operating Systems
Northwestern University

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 1 2 3

0
1

2
3

0 1 1 1

0 0 0 0

0 0 0 0

0 0 0 0

0 1 2 3

0
1

2
3

0 0 1 1

1 0 1 1

0 0 0 0

0 0 0 0

0 1 2 3

0
1

2
3

0 0 0 1

1 0 0 1

1 1 0 1

0 0 0 0

0 1 2 3

0
1

2
3

0 0 0 0

1 0 0 0

1 1 0 0

1 1 1 0

0 1 2 3

0
1

2
3

0 0 0 0

1 0 0 0

1 1 0 1

1 1 0 0

0 1 2 3

0
1

2
3

0 0 0 0

1 0 1 1

1 0 0 1

1 0 0 0

0 1 2 3

0
1

2
3

0 1 1 1

0 0 1 1

0 0 0 1

0 0 0 0

0 1 2 3

0
1

2
3

0 1 1 0

0 0 1 0

0 0 0 0

1 1 1 0

0 1 2 3

0
1

2
3

0 0 1 0

0 0 1 0

1 0 1 1

1 0 1 0

0 1 2 3

0
1

2
3

15

Simulating LRU in software

Not Frequently Used
– Software counter per page
– At clock interrupt – add R to counter for each page
– Problem - it never forgets!

Better – Aging
– Push R from the left, drop bit on the right
– How is this not LRU? One bit per tick & a finite number of bits

per counter

EECS 343 Operating Systems
Northwestern University

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1

0

1

0

1

1

0

1

2

3

4

5

0 0 0 0 0 0 0 0
0

1

2

3

4

5

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0

1

1

0

0

1

0

0

1

2

3

4

5

16

Working set algorithm

Most programs exhibit locality of reference – over a
short time, just a few common pages
Working set
– Set of pages used by the k most recent memory references
– ws(k, t) – size of the working set at time t (k is the working set

window size)
– What bounds ws(k, t) as you increase k?
– How could you use this knowledge to reduce turnaround

time?

Clearly ws(ki,t) ≤ ws(kj,t)
for i < j

ws(k,t)

k

EECS 343 Operating Systems
Northwestern University

17

Working set algorithm

Working set and page replacement
– Victim – a page not in the working set

At each clock interrupt – scan the page table
– R = 1? Write Current Virtual Time (CVT) into Time of Last Use
– R = 0? CVT – Time of Last Use > Threshold ? out! else see if

there’s someone and evict oldest (w/ R=0)
– If all are in the working set (all R = 1) random

EECS 343 Operating Systems
Northwestern University

R
bit

2204

Current virtual time

18

WSClock algorithm
Problem with WS algorithm – Scans the whole table
Combine clock & working set
– If R = 1, same as working set
– If R = 0, if age > T and page clean, out
– If dirty, schedule write and

check next one
– If loop around,

There’s 1+ write scheduled –
you’ll have a clean page soon

There’s none, pick any one

R = 0 & 2204 – 1213 > T

EECS 343 Operating Systems
Northwestern University

1620 0

1213 0

2003 1 2020 1

1980 1

2084 1 2032 1

2014 1

2204

Current virtual time

2204 1

2204 1

19

Belady's anomaly

The more page frames the fewer page faults, right?
– FIFO with 3 page frames
– FIFO with 4 page frames

0 1 2 3 0 1 4

0 1 2 3 0 1

0 1 2 3 0

0 1 2 3 0 1 4 0 1 2 3 4

0 1 2 3 3 3 4

0 1 2 2 2 3

0 1 1 1 2

0 0 0 1

P P P P P P P

P P P P

All page frames
initially empty

EECS 343 Operating Systems
Northwestern University

20

Belady's anomaly

The more page frames the fewer page faults, right?
– FIFO with 3 page frames
– FIFO with 4 page frames

0 1 2 3 0 1 4 4 4 2 3 3

0 1 2 3 0 1 1 1 4 2 2

0 1 2 3 0 0 0 1 4 4

0 1 2 3 3 3 4 0 1 2 3 4

0 1 2 2 2 3 4 0 1 2 3

0 1 1 1 2 3 4 0 1 2

0 0 0 1 2 3 4 0 1

P P P P P P P P P

P P P P PPPPPP

9 page faults

10 page faults

0 1 2 3 0 1 4 0 1 2 3 4

EECS 343 Operating Systems
Northwestern University

21

Modeling page replacement algorithms

Paging system can be characterized by
– Page replacement algorithm
– a reference string
– # page frames

Abstract interpreter with
– Internal array, M, to keep track of memory state

• Size of (M) = # virtual pages, n
– Split in two parts

• Top m entries, for m pages frame
• The bottom part (n – m) for pages that have been referenced but

eventually paged out
– Initially M is empty

EECS 343 Operating Systems
Northwestern University

22

An example using LRU

Pages in page
frames

Pages paged
out to disk

Reference to a page (5) out of
the blue box → page fault

EECS 343 Operating Systems
Northwestern University

23

Distance string – each page reference
denoted by the distance from top of the
stack where the page was located (if not
yet referenced: ∞)

Stack algorithms

Probability density function
of two distance strings

Model works well with other algorithms. Particularly interesting …
Stack algorithm: M(m,r) ⊆ M(m+1,r)

EECS 343 Operating Systems
Northwestern University

Pages in memory with m
pages frames and after r
memory references

24

Distance string & page faults

Computation of page fault rate from distance string
Ci – number of occurrences of i in distance string
Fm – number of page faults with m frames

4

3

Ci

1

2

3

4

5

6

7

∞

Fi

1

2

3

4

5

6

7

∞

Number of
times 1 occur in
distance string

C7 + C∞

Number of page faults
with 6 frames

EECS 343 Operating Systems
Northwestern University

∞
+=

+= ∑ CCF
n

mk
km

1

25

Distance string & page faults

Computation of page fault rate from distance string
Ci – number of occurrences of i in distance string
Fm – number of page faults with m frames

4

3

3

3

2

1

0

8

Ci

1

2

3

4

5

6

7

∞

20

17

14

11

9

8

8

8

Fi

1

2

3

4

5

6

7

∞

∞
+=

+= ∑ CCF
n

mk
km

1

EECS 343 Operating Systems
Northwestern University

26

Next time …

You now understand how things work, i.e. the
mechanism …
Next time we’ll consider design and
implementation issues for paging systems – or
things you want/need to pay attention for good
performance

EECS 343 Operating Systems
Northwestern University

	Virtual Memory
	Before virtual memory
	Virtual memory
	Pages, page frames and tables
	Since virtual memory >> physical memory
	Page replacement algorithms
	Why does demand paging work?
	Optimal algorithm (Belady’s algorithm)
	FIFO algorithm
	Not recently used (NRU) algorithm
	Second chance algorithm
	Clock algorithm
	Least recently used (LRU) algorithm
	A second HW LRU implementation
	Simulating LRU in software
	Working set algorithm
	Working set algorithm
	WSClock algorithm
	Belady's anomaly
	Belady's anomaly
	Modeling page replacement algorithms
	An example using LRU
	Stack algorithms
	Distance string & page faults
	Distance string & page faults
	Next time …

